我有一个带有多种图像类型(RGB,Gray ...)的c ++应用程序,每种类型都有旋转或缩放等属性。每种图像类型都是通过其他类型的计算生成的。例如,通过旋转GrayImage
生成轮换GrayImage
,而RGBImage
又是通过“灰化”GetX(...)
生成的。{/ p>
我想设计一个带有方法map<...,RGBImage>
map<...,GrayImage>
的缓存类,缓存各种图像(可能还有计算路径中的所有图像)。
该类还知道如何生成每个图像,以防它不在缓存中。
班级必须满足一些限制条件:
由于我们处理的是不同类型和表示的图像(RGB,GrayScale等),因此缓存必须为调用代码返回一个具体类,以便能够在不进行某种转换的情况下使用它。因此,缓存机制必须包含包含具体类型的不同缓存结构。 (如果我错了,请修理我)
Key
例如,。
缓存必须能够灵活应对图像计算的变化。代码的更改只要不太大就可以接受。
当前版本我为每种图像类型附加了GrayKey
结构。
有RGBKey
,GrayKey
等等。各种键包含缩放和旋转等属性,并且可以具有特定于图像的属性(例如, map <XKey,XImage>
的toGrayConvertingMethod)。
缓存包含以下形式的地图:
GetX(...)
Key
方法接收{{1}}结构作为参数,例如请求Rotated GrayImage。
但是,此实现强制缓存应用大量逻辑来计算图像。必须检查GrayKey是否请求旋转图像并采取相应措施。
我想以更优雅的方式“编码”这个图像计算关系,但似乎找不到它。
有什么建议吗?
非常感谢。
答案 0 :(得分:2)
也许你可以使用Boost.MultiIndex
容器做点什么?它允许您创建一个存储图像数据的类型,以及如何操作它的详细信息,然后根据您想要的任何键组合查找值。如果您之前没有使用它,它可能看起来有点令人生畏,但我附上了一个例子。
显然,我的例子只处理缓存机制的存储/检索部分,如果你将它们粘在一起,如果查找失败就可以生成图像的东西,它应该做你想要的一切。扩展它也很容易...需要查找额外的参数?您只需要为ImageCache
typedef添加另一个索引。
#include <boost/multi_index_container.hpp>
#include <boost/multi_index/composite_key.hpp>
#include <boost/multi_index/member.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index/hashed_index.hpp>
#include <boost/multi_index/tag.hpp>
#include <boost/shared_array.hpp>
#include <algorithm>
#include <iostream>
#include <utility>
// A cache item, stores the image data, and any values we need to
// index on.
struct ImageCacheItem
{
enum RgbMode { RGB_MODE_COLOUR, RGB_MODE_GREYSCALE };
// Im not sure how much copying goes on in the container,
// so using a smart pointer to prevent copying large amounts
// of data.
boost::shared_array<char> imageBuffer;
double rotation;
double scale;
RgbMode rgbMode;
ImageCacheItem(double r, double s)
: rotation(r), scale(s)
{
}
};
// These are "tag" structures, they are used as part of the
// multi_index_container as a way to distinguish between indicies.
struct ByRotation {};
struct ByScale {};
struct ByRgb {};
struct ByRotationScale {};
// Typedef of the container itself.
typedef boost::multi_index_container<
ImageCacheItem, // The data type for the container.
// Note there is no "key" type, as the key values
// are extracted from the data items theselves.
boost::multi_index::indexed_by<
// Define an index for the rotation value
boost::multi_index::ordered_non_unique<
boost::multi_index::tag<ByRotation>,
BOOST_MULTI_INDEX_MEMBER(ImageCacheItem, double, rotation)
>,
// Define an index for the scale value
boost::multi_index::ordered_non_unique<
boost::multi_index::tag<ByScale>,
BOOST_MULTI_INDEX_MEMBER(ImageCacheItem, double, scale)
>,
// Define an index for the rgb value
boost::multi_index::hashed_non_unique<
boost::multi_index::tag<ByRgb>,
BOOST_MULTI_INDEX_MEMBER(ImageCacheItem, ImageCacheItem::RgbMode, rgbMode)
>,
// Define an index by rotation + scale
boost::multi_index::hashed_unique<
boost::multi_index::tag<ByRotationScale>,
boost::multi_index::composite_key<
ImageCacheItem,
BOOST_MULTI_INDEX_MEMBER(ImageCacheItem, double, rotation),
BOOST_MULTI_INDEX_MEMBER(ImageCacheItem, double, scale)
>
>
>
> ImageCache;
// Utility typedefs, you'll want these to shorten the iterator
// data types when you're looking things up (see main).
typedef ImageCache::index<ByRotation>::type ImageCacheByRotation;
typedef ImageCache::index<ByScale>::type ImageCacheByScale;
typedef ImageCache::index<ByRgb>::type ImageCacheByRgb;
typedef ImageCache::index<ByRotationScale>::type ImageCacheByRotationScale;
int main()
{
// Create the cache and add time "images" to it.
ImageCache cache;
cache.insert(ImageCacheItem(10, 10));
cache.insert(ImageCacheItem(10, 20));
cache.insert(ImageCacheItem(20, 20));
// look up the images with scale of 20.
typedef ImageCacheByScale::iterator ScaleIter;
std::pair<ScaleIter, ScaleIter> scaleResult = cache.get<ByScale>().equal_range(20);
std::cout << "Found " << std::distance(scaleResult.first, scaleResult.second) << " Results" << std::endl;
// look up the image with rotation = 10 && scale = 20.
ImageCacheByRotationScale::iterator rsResult = cache.get<ByRotationScale>().find(boost::make_tuple(10, 20));
std::cout << "Found " << (rsResult != cache.get<ByRotationScale>().end() ? 1 : 0) << " Results" << std::endl;
return 0;
}
编辑:它很重要......
我已经尝试扩展上面的示例,以便在缓存中找到最接近的图像,但是有偏差,所以如果你想要旋转45,那么如果没有找到完全匹配的10,那么它会倾向于其中一个属性相同而另一个属性为0的结果(即10的缩放,但是0旋转,所以你需要做的就是旋转)
代码被注释以解释它的作用,但基本上,它使用模板递归按顺序搜索索引,一旦索引找到一些匹配,它就会尝试按相关性顺序对它们进行排序,并返回最佳匹配。要添加其他属性,您需要执行以下操作:
ImageCacheItem
ImageCacheSimilarity
ImageCache
typedef 它可能不是最佳解决方案,但我认为它涵盖了您在评论中提到的用例。
#include <boost/multi_index_container.hpp>
#include <boost/multi_index/composite_key.hpp>
#include <boost/multi_index/member.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index/hashed_index.hpp>
#include <boost/multi_index/tag.hpp>
#include <boost/mpl/list.hpp>
#include <boost/optional.hpp>
#include <boost/ref.hpp>
#include <boost/shared_array.hpp>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <utility>
#include <vector>
#include <typeinfo>
// A cache item, stores the image data, and any values we need to
// index on.
struct ImageCacheItem
{
enum RgbMode { RGB_MODE_COLOUR, RGB_MODE_GREYSCALE };
// Im not sure how much copying goes on in the container,
// so using a smart pointer to prevent copying large amounts
// of data.
boost::shared_array<char> imageBuffer;
double rotation;
double scale;
RgbMode rgbMode;
ImageCacheItem(double r, double s)
: rotation(r), scale(s)
{
}
};
// Calculates the similarity between two ImageCacheItem objects.
int ImageCacheSimilarity(const ImageCacheItem& item, const ImageCacheItem& target)
{
const double EPSILON = 0.0000001;
int score = 0;
// 2 points for an exact match
// 1 point if the value is 0 (e.g. not rotated, so can be used as a starting point)
// -1 point otherwise
score += (std::fabs(item.rotation - target.rotation) < EPSILON)
? 2
: ((std::fabs(item.rotation) < EPSILON) ? 1 : -1);
score += (std::fabs(item.scale - target.scale) < EPSILON)
? 2
: ((std::fabs(item.scale) < EPSILON) ? 1 : -1);
score += (item.rgbMode == target.rgbMode) ? 2 : 0;
return score;
}
// Orders ImageCacheItem objects based on their similarity to a target value.
struct ImageCacheCmp
{
const ImageCacheItem& target;
ImageCacheCmp(const ImageCacheItem& t)
: target(t)
{
}
bool operator()(const ImageCacheItem& a, const ImageCacheItem& b)
{
return (ImageCacheSimilarity(a, target) > ImageCacheSimilarity(b, target));
}
};
// These are "tag" structures, they are used as part of the
// multi_index_container as a way to distinguish between indicies.
struct ByRotation {};
struct ByScale {};
struct ByRgb {};
struct ByRotationScale {};
// Typedef of the container itself.
typedef boost::multi_index_container<
ImageCacheItem, // The data type for the container.
// Note there is no "key" type, as the key values
// are extracted from the data items theselves.
boost::multi_index::indexed_by<
// The order of indicies here will affect performance, put the
// ones that match against the most fields first. Its not required
// to make it work, but it will reduce the number of matches to
// compare against later on.
// Define an index by rotation + scale
boost::multi_index::hashed_unique<
boost::multi_index::tag<ByRotationScale>,
boost::multi_index::composite_key<
ImageCacheItem,
BOOST_MULTI_INDEX_MEMBER(ImageCacheItem, double, rotation),
BOOST_MULTI_INDEX_MEMBER(ImageCacheItem, double, scale)
>
>,
// Define an index for the rotation value
boost::multi_index::ordered_non_unique<
boost::multi_index::tag<ByRotation>,
BOOST_MULTI_INDEX_MEMBER(ImageCacheItem, double, rotation)
>,
// Define an index for the scale value
boost::multi_index::ordered_non_unique<
boost::multi_index::tag<ByScale>,
BOOST_MULTI_INDEX_MEMBER(ImageCacheItem, double, scale)
>,
// Define an index for the rgb value
boost::multi_index::hashed_non_unique<
boost::multi_index::tag<ByRgb>,
BOOST_MULTI_INDEX_MEMBER(ImageCacheItem, ImageCacheItem::RgbMode, rgbMode)
>
>
> ImageCache;
// Type of the vector used when collecting index results. It stores
// references to the values in the cache to minimise copying.
typedef std::vector<boost::reference_wrapper<const ImageCacheItem> > ImageCacheResults;
// Utility class for overload resolution
template <int I>
struct Int2Type
{
enum { value = I };
};
void FindMatches(
const ImageCacheItem& item,
const ImageCache& cache,
ImageCacheResults& results,
const Int2Type<boost::mpl::size<ImageCache::index_type_list>::type::value>&)
{
// End of template recursion
}
template <int I>
void FindMatches(
const ImageCacheItem& item,
const ImageCache& cache,
ImageCacheResults& results,
const Int2Type<I>&)
{
// Get the index being searched
typedef typename ImageCache::nth_index<I>::type Index;
// This type knows how to extract the relevant bits of ImageCacheItem
// for this particular index.
typename Index::key_from_value keyExtractor;
// Look for matches in the index.
std::pair<typename Index::const_iterator, typename Index::const_iterator> iter =
cache.get<I>().equal_range(keyExtractor(item));
// If we found any results, add them to 'results', otherwise
// continue to the next index.
if (iter.first != iter.second)
{
results.reserve(std::distance(iter.first, iter.second));
for ( ; iter.first != iter.second; ++iter.first)
{
results.push_back(boost::cref(*iter.first));
}
}
else
{
FindMatches(item, cache, results, Int2Type<I + 1>());
}
}
boost::optional<ImageCacheItem> FindClosestImage(const ImageCacheItem& item, const ImageCache& cache)
{
// Find exact/partial matches according to the indicies.
ImageCacheResults results;
FindMatches(item, cache, results, Int2Type<0>());
// If no matches were found, return an empty value
if (results.empty())
{
return boost::optional<ImageCacheItem>();
}
// We got this far, so we must have some candiates, the problem is
// we dont know which is the best match, so here we sort the results
// based on proximity to the "item". However, we are only interested
// in the best match, so do a partial_sort.
std::partial_sort(results.begin(), results.begin() + 1, results.end(), ImageCacheCmp(item));
return results.front().get();
}
int main()
{
// Create the cache and add some "images" to it.
ImageCache cache;
cache.insert(ImageCacheItem(10, 20));
cache.insert(ImageCacheItem(10, 10));
cache.insert(ImageCacheItem(10, 2));
cache.insert(ImageCacheItem(20, 20));
cache.insert(ImageCacheItem(30, 20));
cache.insert(ImageCacheItem(30, 0));
// Look for an image similar to rotation = 30 && scale = 2.
boost::optional<ImageCacheItem> result = FindClosestImage(ImageCacheItem(30, 2), cache);
// Have to check if result is value before usage, it would be empty
// if not match is found.
if (result)
{
std::cout << "Found (" << result->rotation
<< ", " << result->scale << ")"
<< std::endl;
}
else
{
std::cout << "No Results" << std::endl;
}
return 0;
}
答案 1 :(得分:1)
您是否考虑过使用薄型存取器进行灰色和旋转彩色图像? Adobe的通用映像库(现在是boost的一部分)使用了一些聪明的迭代器
答案 2 :(得分:0)
您考虑使用STL container吗?使用地图或集来存储对图像的引用。快速查找以查看您是否已创建图像。