我有一个熊猫数据框,在第一列中有一个区域,在其余区域中有8年的季度数据。大约有4400行。这是一个示例:
idx Q12000 Q22000 Q32000 Q42000 Q12001 Q22001 Q32001 Q42001 Q12002 Q22002 Q32002 Q42002
0 4085280.0 4114911.0 4108089.0 4111713.0 4055699.0 4076430.0 4043219.0 4039370.0 4201158.0 4243119.0 4231823.0 4254681.0
1 21226.0 21566.0 21804.0 22072.0 21924.0 23232.0 22748.0 22258.0 22614.0 22204.0 22500.0 22660.0
2 96400.0 102000.0 98604.0 97086.0 96354.0 103054.0 97824.0 95958.0 115938.0 123064.0 120406.0 120648.0
3 23820.0 24116.0 24186.0 23726.0 23504.0 23574.0 23162.0 23078.0 22306.0 22334.0 22152.0 22080.0
4 7838.0 7906.0 7714.0 7676.0 7480.0 7520.0 7102.0 6722.0 8324.0 8166.0 8208.0 8326.0
这是一张描述我要计算的图像: timeline
我能够很容易地计算出最低点。
df['nadir'] = df.iloc[:,2:].min(axis=1)
df['nadir_qtr'] = df.iloc[:,2:].idxmin(axis=1)
idx Q12000 Q22000 Q32000 Q42000 Q12001 Q22001 Q32001 Q42001 Q12002 Q22002 Q32002 Q42002 nadir nadir_qtr
0 4085280.0 4114911.0 4108089.0 4111713.0 4055699.0 4076430.0 4043219.0 4039370.0 4201158.0 4243119.0 4231823.0 4254681.0 4039370.0 Q42001
1 21226.0 21566.0 21804.0 22072.0 21924.0 23232.0 22748.0 22258.0 22614.0 22204.0 22500.0 22660.0 21226 Q12000
2 96400.0 102000.0 98604.0 97086.0 96354.0 103054.0 97824.0 95958.0 115938.0 123064.0 120406.0 120648.0 95958.0 Q42001
3 23820.0 24116.0 24186.0 23726.0 23504.0 23574.0 23162.0 23078.0 22306.0 22334.0 22152.0 22080.0 22080.0 Q42002
4 7838.0 7906.0 7714.0 7676.0 7480.0 7520.0 7102.0 6722.0 8324.0 8166.0 8208.0 8326.0 6722.0 Q42001
但是,要获得前后的峰值或季度值,我会遇到困难。我最接近的是这样的:
df['pre-peak'] = df.loc[:,:df['nadir_qtr'].max(axis=1)
df['pre-peak_qtr'] = df.loc[:,:df['nadir_qtr']].idxmax(axis=1)
预期输出:
idx Q12000 Q22000 Q32000 Q42000 Q12001 Q22001 Q32001 Q42001 Q12002 Q22002 Q32002 Q42002 nadir nadir_qtr pre-peak pre-peak_qtr
0 4085280.0 4114911.0 4108089.0 4111713.0 4055699.0 4076430.0 4043219.0 4039370.0 4201158.0 4243119.0 4231823.0 4254681.0 4039370.0 Q42001 4114911.0 Q22000
1 21226.0 21566.0 21804.0 22072.0 21924.0 23232.0 22748.0 22258.0 22614.0 22204.0 22500.0 22660.0 21226.0 Q12000 NaN NaN
2 96400.0 102000.0 98604.0 97086.0 96354.0 103054.0 97824.0 95958.0 115938.0 123064.0 120406.0 120648.0 95958.0 Q42001 103054.0 Q22001
3 23820.0 24116.0 24186.0 23726.0 23504.0 23574.0 23162.0 23078.0 22306.0 22334.0 22152.0 22080.0 22080.0 Q42002 24816.0 Q32000
4 7838.0 7906.0 7714.0 7676.0 7480.0 7520.0 7102.0 6722.0 8324.0 8166.0 8208.0 8326.0 6722.0 Q42001 7906.0 Q2200
但是任何这种变化都会给我错误的数据或错误(最常见的是)
TypeError:此dtype不允许进行归约运算'argmax'
我尝试了很多策略,将每行作为一个numpy数组进行强行迭代,以拆分每行。我真的被卡住了。
答案 0 :(得分:2)
这是一种使用“帮助器”功能的方法:
implementation 'com.google.firebase:firebase-auth:19.4.0'
implementation 'com.google.firebase:firebase-database:19.4.0'
implementation 'com.google.firebase:firebase-analytics:17.5.0'
第二,定义助手功能:
# create the data frame
from io import StringIO
import pandas as pd
data = ''' Q12000 Q22000 Q32000 Q42000 Q12001 Q22001 Q32001 Q42001 Q12002 Q22002 Q32002 Q42002
0 4085280.0 4114911.0 4108089.0 4111713.0 4055699.0 4076430.0 4043219.0 4039370.0 4201158.0 4243119.0 4231823.0 4254681.0
1 21226.0 21566.0 21804.0 22072.0 21924.0 23232.0 22748.0 22258.0 22614.0 22204.0 22500.0 22660.0
2 96400.0 102000.0 98604.0 97086.0 96354.0 103054.0 97824.0 95958.0 115938.0 123064.0 120406.0 120648.0
3 23820.0 24116.0 24186.0 23726.0 23504.0 23574.0 23162.0 23078.0 22306.0 22334.0 22152.0 22080.0
4 7838.0 7906.0 7714.0 7676.0 7480.0 7520.0 7102.0 6722.0 8324.0 8166.0 8208.0 8326.0
'''
df = pd.read_csv(StringIO(data), sep='\s+', engine='python')
第三,我们使用辅助函数并组合结果:
def calc_nadir(s):
assert isinstance(s, pd.Series)
return s.min()
def calc_nadir_qtr(s):
return s.argmin()
def calc_pre_peak(s):
return s[ : s.argmin()].max()
def calc_pre_peak_quarter(s):
try:
qtr = s[ : s.argmin()].argmax()
except:
qtr = None
return qtr
def calc_post_peak(s):
return s[s.argmin() : ].max()
def calc_post_peak_qtr(s):
return s[s.argmin() : ].argmax() + s.argmin()