TypeError:tf__norm()接受1个位置参数,但给出了2个

时间:2020-09-12 22:40:04

标签: tensorflow keras dataset

我试图将函数传递给数据集以对数据框中的非数值数据进行归一化,但是我不断收到此错误:

TypeError:TypeError:tf__norm()接受1个位置参数,但给出了2个

def norm(dataframe1):
    for header in dataframe1._get_numeric_data().columns:
        dataframe1[header] = (dataframe1[header] - dataframe1[header].mean())/dataframe1[header].std()
    return dataframe1 
    enter code here



train, val= train_test_split( dataframe1, test_size =0.2)

def df_to_dataset(dataframe, shuffle=True, batch_size=32):
    dataframe = dataframe.copy()
    labels = dataframe.pop("target")
    ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), labels))
    if shuffle:
        ds = ds.shuffle(buffer_size=len(dataframe))
    ds = ds.batch(batch_size)
    ds=ds.map(norm)
return ds

0 个答案:

没有答案