file_list = []
class_list = []
DATADIR = "C://Users//SB//Python_Programs//Image_Classifications//Data"
# All the categories you want your neural network to detect
CATEGORIES = ["DealBills", "RX"]
# The size of the images that your neural network will use
IMG_SIZE = 299
# Checking or all images in the data folder
for category in CATEGORIES :
path = os.path.join(DATADIR, category)
for img in os.listdir(path):
img_array = cv2.imread(os.path.join(path, img), cv2.IMREAD_GRAYSCALE)
training_data = []
def create_training_data():
for category in CATEGORIES :
path = os.path.join(DATADIR, category)
class_num = CATEGORIES.index(category)
for img in os.listdir(path):
try :
img_array = cv2.imread(os.path.join(path, img), cv2.IMREAD_GRAYSCALE)
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
training_data.append([new_array, class_num])
except Exception as e:
pass
create_training_data()
random.shuffle(training_data)
X = [] #features
y = [] #labels
for features, label in training_data:
X.append(features)
y.append(label)
X = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
# Creating the files containing all the information about your model
pickle_out = open("X.pickle", "wb")
pickle.dump(X, pickle_out)
pickle_out.close()
pickle_out = open("y.pickle", "wb")
pickle.dump(y, pickle_out)
pickle_out.close()
pickle_in = open("X.pickle", "rb")
X = pickle.load(pickle_in)
# Opening the files about data
X = pickle.load(open("X.pickle", "rb"))
y = pickle.load(open("y.pickle", "rb"))
# normalizing data (a pixel goes from 0 to 255)
X = X/255.0
# Building the model
model = Sequential()
# 3 convolutional layers
#model.add(Conv2D(32, (3, 3), input_shape = X.shape[1:]))
model.add(Conv2D(32, (3, 3), input_shape = (299,299,1)))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
# 2 hidden layers
model.add(Flatten())
model.add(Dense(128))
model.add(Activation("relu"))
model.add(Dense(128))
model.add(Activation("relu"))
# The output layer with 13 neurons, for 13 classes
model.add(Dense(13))
model.add(Activation("softmax"))
# Compiling the model using some basic parameters
model.compile(loss="sparse_categorical_crossentropy",
optimizer="adam",
metrics=["accuracy"])
y = np.array(y)
#X = np.array(X)
#X = X.reshape(-1,IMG_SIZE,IMG_SIZE,1)
# Training the model, with 40 iterations
# validation_split corresponds to the percentage of images used for the validation phase compared to all the images
history = model.fit(X, y, batch_size=10, epochs=20, validation_split=0.1)
# Saving the model
model_json = model.to_json()
with open("model.json", "w") as json_file :
json_file.write(model_json)
model.save_weights("model.h5")
print("Saved model to disk")
model.save('CNN.model')
###
# Printing a graph showing the accuracy changes during the training phase
#print(history.history.keys())
#plt.figure(1)
#plt.plot(history.history['acc'])
#plt.plot(history.history['val_acc'])
#plt.title('model accuracy')
#plt.ylabel('accuracy')
#plt.xlabel('epoch')
#plt.legend(['train', 'validation'], loc='upper left')
###
CATEGORIES = ["DealBills", "RX"]
def prepare(file):
IMG_SIZE = 299
img_array = cv2.imread(file, cv2.IMREAD_GRAYSCALE)
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
return new_array.reshape(-1, IMG_SIZE, IMG_SIZE, 1)
model = tf.keras.models.load_model("CNN.model")
image = 'C://Users//SB//Python_Programs//Image_Classifications//Datasets//Images//DealBill//42979929_25.jpg' #your image path
prediction = model.predict([image])
prediction = list(prediction[0])
print(CATEGORIES[prediction.index(max(prediction))])
查询-请找到上面的代码。我遇到错误
"ValueError: Input 0 of layer sequential is incompatible with the layer: : expected min_ndim=4, found ndim=2. Full shape received: [None, 1]" for line prediction = model.predict([image])
任何人都可以帮忙,我正在尝试为不同格式的发票,分类不同文档的发票建立模型。
答案 0 :(得分:0)
Tensorflow.Keras Conv2D 需要 4 维形状的输入,但在这种情况下,输入是 2D 形状。
Conv2D 输入形状
具有形状的 4+D 张量:batch_shape + (channels, rows, cols)
if data_format='channels_first'
或具有形状的 4+D 张量:batch_shape + (rows, cols, channels)
if data_format='channels_last'。
为输入数据添加额外维度
data = tf.expand_dims(data, axis =-1)