ValueError:层顺序的输入0与层不兼容::预期的min_ndim = 4,找到的ndim = 2。收到完整的形状:[无,2584]

时间:2020-09-06 04:35:56

标签: python tensorflow machine-learning keras deep-learning

我正在一个项目中,该项目将人声部分与音频隔离开来。我使用的是DSD100数据集,但为了进行测试,我使用的DSD100subset dataset仅使用混音和人声。我将这项工作基于此article

首先,我处理音频以提取频谱图并将其放在列表中,所有音频形成四个列表(trainMixed,trainVocals,testMixed,testVocals)。像这样:

def to_spec(wav, n_fft=1024, hop_length=256):
    return librosa.stft(wav, n_fft=n_fft, hop_length=hop_length)

def prepareData(filename, sr=22050, hop_length=256, n_fft=1024):
  audio_wav = librosa.load(filename, sr=sr, mono=True, duration=30)[0]
  audio_spec=to_spec(audio_wav, n_fft=n_fft, hop_length=hop_length)
  audio_spec_mag = np.abs(audio_spec)
  maxVal = np.max(audio_spec_mag)

  return audio_spec_mag, maxVal


# FOR EVERY LIST (trainMixed, trainVocals, testMixed, testVocals)
trainMixed = []
trainMixedNum = 0
for (root, dirs, files) in walk('./Dev-subset-mix/Dev/'):
  for d in dirs:
    filenameMix = './Dev-subset-mix/Dev/'+d+'/mixture.wav'
    spec_mag, maxVal = prepareData(filenameMix, n_fft=1024, hop_length=256)
    trainMixed.append(spec_mag/maxVal)

接下来我建立模型:

import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from keras.optimizers import SGD
from keras.layers.advanced_activations import LeakyReLU

model = Sequential()
model.add(Conv2D(16, (3,3), padding='same', input_shape=(513, 25, 1)))
model.add(LeakyReLU())
model.add(Conv2D(16, (3,3), padding='same'))
model.add(LeakyReLU())
model.add(MaxPooling2D(pool_size=(3,3)))
model.add(Dropout(0.25))
model.add(Conv2D(16, (3,3), padding='same'))
model.add(LeakyReLU())
model.add(Conv2D(16, (3,3), padding='same'))
model.add(LeakyReLU())
model.add(MaxPooling2D(pool_size=(3,3)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(64))
model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
sgd = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss=keras.losses.binary_crossentropy, optimizer=sgd, metrics=['accuracy'])

并运行模型:

model.fit(trainMixed, trainVocals,epochs=10, validation_data=(testMixed, testVocals))

但是我得到这个结果:

ValueError: in user code:

    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:806 train_function  *
        return step_function(self, iterator)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:796 step_function  **
        outputs = model.distribute_strategy.run(run_step, args=(data,))
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:1211 run
        return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica
        return self._call_for_each_replica(fn, args, kwargs)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica
        return fn(*args, **kwargs)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:789 run_step  **
        outputs = model.train_step(data)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:747 train_step
        y_pred = self(x, training=True)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py:976 __call__
        self.name)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/input_spec.py:158 assert_input_compatibility
        ' input tensors. Inputs received: ' + str(inputs))

    ValueError: Layer sequential_1 expects 1 inputs, but it received 2 input tensors. Inputs received: [<tf.Tensor 'IteratorGetNext:0' shape=(None, 2584) dtype=float32>, <tf.Tensor 'IteratorGetNext:1' shape=(None, 2584) dtype=float32>]

我是这个主题的新手,感谢您预先提供的帮助。

1 个答案:

答案 0 :(得分:5)

为Keras的fit()函数指定输入数据可能是一个问题。我建议像这样将tf.data.Dataset用作fit()的输入:

import tensorflow as tf

train_data = tf.data.Dataset.from_tensor_slices((trainMixed, trainVocals))
valid_data = tf.data.Dataset.from_tensor_slices((testMixed, testVocals))

model.fit(train_data, epochs=10, validation_data=valid_data)

然后,您还可以在TF数据集上使用shuffle()batch()之类的功能。

编辑:似乎您输入的形状也不正确。您为第一转换层指定的input_shape(513, 25, 1),因此输入应为形状(batch_size, 513, 25, 1)的批张量,而您要输入形状(batch_size, 2584)。因此,您需要重塑形状,并可能将输入剪切成指定的形状,或者指定新的形状。