从熊猫绘制时间序列数据会导致ValueError

时间:2020-09-08 15:29:45

标签: python pandas matplotlib

我正在使用pandas DataFrame和matplotlib在同一图中绘制三条线。数据应该是正确的,但是当我尝试绘制线条时,代码返回了ValueError,这是意外的。

详细错误警告说:ValueError: view limit minimum -105920.979 is less than 1 and is an invalid Matplotlib date value。如果您将非datetime值传递给具有datetime单位的轴,通常会发生这种情况

如何解决此错误,并在同一图中绘制三行?

import pandas as pd
import datetime as dt
import pandas_datareader as web
import matplotlib.pyplot as plt
from matplotlib import style
import matplotlib.ticker as ticker
spot=pd.read_excel('https://www.eia.gov/dnav/pet/hist_xls/RWTCd.xls',sheet_name='Data 1',skiprows=2) #this is spot price data


prod=pd.read_excel('https://www.eia.gov/dnav/pet/hist_xls/WCRFPUS2w.xls',sheet_name='Data 1',skiprows=2) #this is production data
stkp=pd.read_excel('https://www.eia.gov/dnav/pet/hist_xls/WTTSTUS1w.xls',sheet_name='Data 1',skiprows=2) #this is stockpile data

fig,ax = plt.subplots()

ax.plot(spot,label='WTI Crude Oil Price')
ax.plot(prod,label='US Crude Oil Production')
ax.plot(stkp,label='US Crude Oil Stockpile')

plt.legend()
plt.show()

print(spot,prod,stkp)

1 个答案:

答案 0 :(得分:2)

  • 尽管我对导入和绘图进行了一些调整,但运行代码没有错误。
    • 更新matplotlibpandas
    • 如果您正在使用Anaconda,请在Anaconda提示符下键入conda update --all
  • 'Date'列解析为datetime并将其设置为索引。
  • 将图例放置在情节之外
  • yscale设置为'log',因为数字范围很大。
import pandas as pd
import matplotlib.pyplot as plt

spot=pd.read_excel('https://www.eia.gov/dnav/pet/hist_xls/RWTCd.xls', sheet_name='Data 1',skiprows=2, parse_dates=['Date'], index_col='Date') #this is spot price data
prod=pd.read_excel('https://www.eia.gov/dnav/pet/hist_xls/WCRFPUS2w.xls', sheet_name='Data 1',skiprows=2, parse_dates=['Date'], index_col='Date') #this is production data
stkp=pd.read_excel('https://www.eia.gov/dnav/pet/hist_xls/WTTSTUS1w.xls', sheet_name='Data 1',skiprows=2, parse_dates=['Date'], index_col='Date') #this is stockpile data

fig,ax = plt.subplots()

ax.plot(spot, label='WTI Crude Oil Price')
ax.plot(prod, label='US Crude Oil Production')
ax.plot(stkp, label='US Crude Oil Stockpile')

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')

plt.yscale('log')

plt.show()

enter image description here