ValueError:sequence_16层的输入0与该层不兼容:预期ndim = 5,找到的ndim = 4。收到完整的形状:[无,224,224,3]

时间:2020-08-31 17:01:45

标签: python tensorflow keras deep-learning

我正在通过MobileNet使用转移学习,然后将提取的功能发送到LSTM进行视频数据分类。

当我使用image_dataset_from_directory()设置训练,测试,验证数据集时,图像的大小调整为(224,224)。

编辑: 因此,我需要填充数据序列,但是这样做时会出现以下错误,我不太确定在使用image_dataset_from_directory()时该怎么做:

train_dataset = sequence.pad_sequences(train_dataset, maxlen=BATCH_SIZE, padding="post", truncating="post")

InvalidArgumentError: assertion failed: [Unable to decode bytes as JPEG, PNG, GIF, or BMP]
     [[{{node decode_image/cond_jpeg/else/_1/decode_image/cond_jpeg/cond_png/else/_20/decode_image/cond_jpeg/cond_png/cond_gif/else/_39/decode_image/cond_jpeg/cond_png/cond_gif/Assert/Assert}}]] [Op:IteratorGetNext]

我检查了train_dataset类型:

<BatchDataset shapes: ((None, None, 224, 224, 3), (None, None)), types: (tf.float32, tf.int32)>

全局变量:

TARGETX = 224
TARGETY = 224
CLASSES = 3
SIZE = (TARGETX,TARGETY)
INPUT_SHAPE = (TARGETX, TARGETY, 3)
CHANNELS = 3
NBFRAME = 5
INSHAPE = (NBFRAME, TARGETX, TARGETY, 3)

移动网络功能:

def build_mobilenet(shape=INPUT_SHAPE, nbout=CLASSES):
    # INPUT_SHAPE = (224,224,3)
    # CLASSES = 3
    model = MobileNetV2(
        include_top=False,
        input_shape=shape,
        weights='imagenet')
    base_model.trainable = True
    output = GlobalMaxPool2D()
    return Sequential([model, output])

LSTM功能:

def action_model(shape=INSHAPE, nbout=3):
    # INSHAPE = (5, 224, 224, 3)
    convnet = build_mobilenet(shape[1:])
    
    model = Sequential()
    model.add(TimeDistributed(convnet, input_shape=shape))
    model.add(LSTM(64))
    model.add(Dense(1024, activation='relu'))
    model.add(Dropout(.5))
    model.add(Dense(512, activation='relu'))
    model.add(Dropout(.5))
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(.5))
    model.add(Dense(64, activation='relu'))
    model.add(Dense(nbout, activation='softmax'))
    return model
model = action_model(INSHAPE, CLASSES)
model.summary()
Model: "sequential_16"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
time_distributed_6 (TimeDist (None, 5, 1280)           2257984   
_________________________________________________________________
lstm_5 (LSTM)                (None, 64)                344320    
_________________________________________________________________
dense_45 (Dense)             (None, 1024)              66560     
_________________________________________________________________
dropout_18 (Dropout)         (None, 1024)              0         
_________________________________________________________________
dense_46 (Dense)             (None, 512)               524800    
_________________________________________________________________
dropout_19 (Dropout)         (None, 512)               0         
_________________________________________________________________
dense_47 (Dense)             (None, 128)               65664     
_________________________________________________________________
dropout_20 (Dropout)         (None, 128)               0         
_________________________________________________________________
dense_48 (Dense)             (None, 64)                8256      
_________________________________________________________________
dense_49 (Dense)             (None, 3)                 195       
=================================================================
Total params: 3,267,779
Trainable params: 3,233,667
Non-trainable params: 34,112

1 个答案:

答案 0 :(得分:2)

您的模型很好。问题是您提供数据的方式。

您的型号代码:

import tensorflow as tf
import keras
from keras.layers import GlobalMaxPool2D, TimeDistributed, Dense, Dropout, LSTM
from keras.applications import MobileNetV2
from keras.models import Sequential
import numpy as np
from keras.preprocessing.sequence import pad_sequences

TARGETX = 224
TARGETY = 224
CLASSES = 3
SIZE = (TARGETX,TARGETY)
INPUT_SHAPE = (TARGETX, TARGETY, 3)
CHANNELS = 3
NBFRAME = 5
INSHAPE = (NBFRAME, TARGETX, TARGETY, 3)

def build_mobilenet(shape=INPUT_SHAPE, nbout=CLASSES):
    # INPUT_SHAPE = (224,224,3)
    # CLASSES = 3
    model = MobileNetV2(
        include_top=False,
        input_shape=shape,
        weights='imagenet')
    model.trainable = True
    output = GlobalMaxPool2D()
    return Sequential([model, output])

def action_model(shape=INSHAPE, nbout=3):
    # INSHAPE = (5, 224, 224, 3)
    convnet = build_mobilenet(shape[1:])
    
    model = Sequential()
    model.add(TimeDistributed(convnet, input_shape=shape))
    model.add(LSTM(64))
    model.add(Dense(1024, activation='relu'))
    model.add(Dropout(.5))
    model.add(Dense(512, activation='relu'))
    model.add(Dropout(.5))
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(.5))
    model.add(Dense(64, activation='relu'))
    model.add(Dense(nbout, activation='softmax'))
    return model    

现在让我们使用一些虚拟数据尝试该模型:

因此,您的模型接受一系列图像(即视频帧)并将它们(视频)分类为3类之一。

让我们创建一个虚拟数据,每个数据包含10帧的4个视频,即批量大小= 4和时间步长= 10

X = np.random.randn(4, 10, TARGETX, TARGETY, 3)
y = model(X)
print (y.shape)

输出:

(4,3)

按预期,输出大小为(4,3)

现在,使用image_dataset_from_direcctory时您将面临的问题是如何批处理可变长度的视频,因为每个视频中的帧数可能会变化。处理它的方法是使用pad_sequences

例如,如果第一段视频有10帧,第二段视频有9帧,依此类推,您可以执行以下操作

X = [np.random.randn(10, TARGETX, TARGETY, 3), 
     np.random.randn(9, TARGETX, TARGETY, 3), 
     np.random.randn(8, TARGETX, TARGETY, 3), 
     np.random.randn(7, TARGETX, TARGETY, 3)]

X = pad_sequences(X)
y = model(X)
print (y.shape)

输出:

(4,3)

因此,一旦您使用image_dataset_from_direcctory读取图像,就必须将可变长度的帧分批填充。