lstm_35层的输入0与该层不兼容:预期ndim = 3,找到的ndim = 4。收到完整的形状:[无,1966,7059,256]

时间:2020-04-28 07:30:46

标签: python tensorflow keras-layer seq2seq lstm-stateful

我正在单词级嵌入上创建seq2seq模型以进行文本摘要,并且我面临数据形状问题,请帮忙。谢谢。

        encoder_input=Input(shape=(max_encoder_seq_length,))
        embed_layer=Embedding(num_encoder_tokens,256,mask_zero=True)(encoder_input)
        encoder=LSTM(256,return_state=True,return_sequences=False)
        encoder_ouput,state_h,state_c=encoder(embed_layer)
        encoder_state=[state_h,state_c] 
        decoder_input=Input(shape=(max_decoder_seq_length,))
        de_embed=Embedding(num_decoder_tokens,256)(decoder_input)
        decoder=LSTM(256,return_state=True,return_sequences=True)
        decoder_output,_,_=decoder(de_embed,initial_state=encoder_state)
        decoder_dense=Dense(num_decoder_tokens,activation='softmax')
        decoder_output=decoder_dense(decoder_output)
        model=Model([encoder_input,decoder_input],decoder_output)
        model.compile(optimizer='adam',loss="categorical_crossentropy",metrics=['accuracy'])

由于输入的形状,在训练时会出现错误。请帮助我们按照当前形状重塑数据

编码器数据形状:(50,1966,7059) 解码器数据形状:(50,69,1183) 解码器目标形状:(50、69、1183)

    Epoch 1/35
    WARNING:tensorflow:Model was constructed with shape (None, 1966) for input Tensor("input_37:0", shape=(None, 1966), dtype=float32), but it was called on an input with incompatible shape (None, 1966, 7059).
    WARNING:tensorflow:Model was constructed with shape (None, 69) for input Tensor("input_38:0", shape=(None, 69), dtype=float32), but it was called on an input with incompatible shape (None, 69, 1183).
    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    <ipython-input-71-d02252f12e7f> in <module>()
          1 model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
          2           batch_size=16,
    ----> 3           epochs=35)
        ValueError: Input 0 of layer lstm_35 is incompatible with the layer: expected ndim=3, found ndim=4. Full shape received: [None, 1966, 7059, 256]

This is the summary of model

1 个答案:

答案 0 :(得分:1)

我试图复制您的问题并能够成功拟合模型,您可以按照与您的体系结构相同的以下代码进行操作,嵌入层的形状存在一些小问题,其中包括权重对于使用Glove嵌入的嵌入层,在下面还提到了嵌入矩阵的详细信息。

embedding_layer = Embedding(num_words, EMBEDDING_SIZE, weights=[embedding_matrix], input_length=max_input_len)
encoder_inputs_placeholder = Input(shape=(max_encoder_seq_length,))
x = embedding_layer(encoder_inputs_placeholder)
encoder = LSTM(LSTM_NODES, return_state=True)

encoder_outputs, h, c = encoder(x)
encoder_states = [h, c]
decoder_inputs_placeholder = Input(shape=(max_decoder_seq_length,))

decoder_embedding = Embedding(num_decoder_tokens, LSTM_NODES)
decoder_inputs_x = decoder_embedding(decoder_inputs_placeholder)

decoder_lstm = LSTM(LSTM_NODES, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs_x, initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs_placeholder,
  decoder_inputs_placeholder], decoder_outputs)
model.compile(
    optimizer='adam',
    loss='categorical_crossentropy',
    metrics=['accuracy']
)

对于嵌入矩阵:

MAX_NUM_WORDS = 10000
EMBEDDING_SIZE = 100 # you can choose 200, 300 dimensions also, depending on the embedding file you use.
embeddings_dictionary = dict()

glove_file = open(r'/content/drive/My Drive/datasets/glove.6B.100d.txt', encoding="utf8")

for line in glove_file:
    records = line.split()
    word = records[0]
    vector_dimensions = asarray(records[1:], dtype='float32')
    embeddings_dictionary[word] = vector_dimensions
glove_file.close()

num_words = min(MAX_NUM_WORDS, len(word2idx_inputs) + 1)
embedding_matrix = zeros((num_words, EMBEDDING_SIZE))
for word, index in word2idx_inputs.items():
    embedding_vector = embeddings_dictionary.get(word)
    if embedding_vector is not None:
        embedding_matrix[index] = embedding_vector

模型摘要:

Model: "model_2"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_5 (InputLayer)            (None, 16)           0                                            
__________________________________________________________________________________________________
input_6 (InputLayer)            (None, 59)           0                                            
__________________________________________________________________________________________________
embedding_5 (Embedding)         (None, 16, 100)      1000000     input_5[0][0]                    
__________________________________________________________________________________________________
embedding_6 (Embedding)         (None, 59, 64)       5824        input_6[0][0]                    
__________________________________________________________________________________________________
lstm_4 (LSTM)                   [(None, 64), (None,  42240       embedding_5[0][0]                
__________________________________________________________________________________________________
lstm_5 (LSTM)                   [(None, 59, 64), (No 33024       embedding_6[0][0]                
                                                                 lstm_4[0][1]                     
                                                                 lstm_4[0][2]                     
__________________________________________________________________________________________________
dense_2 (Dense)                 (None, 59, 91)       5915        lstm_5[0][0]                     
==================================================================================================
Total params: 1,087,003
Trainable params: 1,087,003
Non-trainable params: 0

enter image description here

希望这可以解决您的问题,快乐学习!