Perl中字符串的最快校验位例程是什么?

时间:2011-06-15 09:18:00

标签: perl pack unpack

给定一串数字,我必须使用Perl尽可能快地对所有数字求和。

我的第一个实现用unpack()解包数字,然后用List :: Utils的sum()对数字列表求和。 它的速度非常快,但是这个任务有更快的打包/解包配方吗?

我尝试了打包/解压缩组合,并对这两个实现进行了基准测试。 二手CPU时间几乎相同;也许有一些我不知道的快速技巧?

以下是我的基准测试方法:

#!/usr/bin/env perl

use 5.012;
use strict;
use List::Util qw/sum/;
use Benchmark qw/timethese/;

timethese ( 1000000, {
    list_util => sub {
        my $CheckDigit = "999989989";
        do {
            $CheckDigit = sum( unpack( 'AAAAAAAAA', $CheckDigit ) );
        } while ( $CheckDigit > 9 );
    },
    perl_only => sub {
        my $CheckDigit = "999989989";
        do {
            $CheckDigit = unpack( '%16S*', pack( 'S9', unpack( 'AAAAAAAAA', $CheckDigit ) ) );
        } while ( $CheckDigit > 9 );
    },
} );

2 个答案:

答案 0 :(得分:6)

unpack不是拆分字符串的最快方法:

#!/usr/bin/env perl

use strict;
use List::Util qw/sum/;
use Benchmark qw/cmpthese/;

cmpthese ( -3, {
    list_util => sub {
        my $CheckDigit = "999989989";
        do {
            $CheckDigit = sum( unpack( 'AAAAAAAAA', $CheckDigit ) );
        } while ( $CheckDigit > 9 );
    },
    unpack_star => sub {
        my $CheckDigit = "999989989";
        do {
            $CheckDigit = sum( unpack( '(A)*', $CheckDigit ) );
        } while ( $CheckDigit > 9 );
    },
    re => sub {
        my $CheckDigit = "999989989";
        do {
            $CheckDigit = sum( $CheckDigit =~ /(.)/g );
        } while ( $CheckDigit > 9 );
    },
    split => sub {
        my $CheckDigit = "999989989";
        do {
            $CheckDigit = sum( split //, $CheckDigit );
        } while ( $CheckDigit > 9 );
    },
    perl_only => sub {
        my $CheckDigit = "999989989";
        do {
            $CheckDigit = unpack( '%16S*', pack( 'S9', unpack( 'AAAAAAAAA', $CheckDigit ) ) );
        } while ( $CheckDigit > 9 );
    },
    modulo => sub {
        my $CheckDigit = "999989989";
        $CheckDigit = ($CheckDigit+0) && ($CheckDigit % 9 || 9);
    },
} );

产地:

                 Rate perl_only list_util       re unpack_star    split   modulo
perl_only     89882/s        --      -15%     -30%        -45%     -54%     -97%
list_util    105601/s       17%        --     -17%        -35%     -45%     -97%
re           127656/s       42%       21%       --        -21%     -34%     -96%
unpack_star  162308/s       81%       54%      27%          --     -16%     -95%
split        193405/s      115%       83%      52%         19%       --     -94%
modulo      3055254/s     3299%     2793%    2293%       1782%    1480%       --

如果您必须将字符串拆分为字符,那么split看起来是您最好的选择。

但是反复对数字求和是almost the same as taking the number mod 9(正如mirod指出的那样)。区别在于$Digits % 9生成0而不是9.一个修复($Digits-1) % 9 + 1的公式,但(至少在Perl中)不适用于全零情况(它产生9而不是0)。在Perl中工作的表达式是($Digits+0) && ($Digits % 9 || 9)。第一项处理全零情况,第二项处理正常情况,第三项处理0到9。

答案 1 :(得分:4)

如果没有使用打包/解压缩并使用简单的拆分,或者在数学上稍微聪明并且使用modulo,那么它是不是太聪明了?这会破坏所有其他方法的废话?

#!/usr/bin/env perl

use strict;
use List::Util qw/sum/;
use Benchmark qw/timethese/;

my $D="99949596";

timethese ( 1000000, {
    naive => sub {
        my $CheckDigit= $D;
        do {
            $CheckDigit = sum( split//, $CheckDigit );
        } while ( $CheckDigit > 9 ); 
    },  
    list_util => sub {
        my $CheckDigit = $D;
        do {
            $CheckDigit = sum( unpack( 'AAAAAAAAA', $CheckDigit ) );
        } while ( $CheckDigit > 9 );
    },
    perl_only => sub {
        my $CheckDigit = $D;
        do {
            $CheckDigit = unpack( '%16S*', pack( 'S9', unpack( 'AAAAAAAAA', $CheckDigit ) ) );
        } while ( $CheckDigit > 9 );
    },
    modulo => sub {
        my $CheckDigit = $D % 9;
    },
} );

结果:

Benchmark: timing 1000000 iterations of list_util, modulo, naive, perl_only...
 list_util:  5 wallclock secs ( 4.62 usr +  0.00 sys =  4.62 CPU) @ 216450.22/s (n=1000000)
    modulo: -1 wallclock secs ( 0.07 usr +  0.00 sys =  0.07 CPU) @ 14285714.29/s (n=1000000)
            (warning: too few iterations for a reliable count)
     naive:  3 wallclock secs ( 2.79 usr +  0.00 sys =  2.79 CPU) @ 358422.94/s (n=1000000)
 perl_only:  6 wallclock secs ( 5.18 usr +  0.00 sys =  5.18 CPU) @ 193050.19/s (n=1000000)