给定一串数字,我必须使用Perl尽可能快地对所有数字求和。
我的第一个实现用unpack()解包数字,然后用List :: Utils的sum()对数字列表求和。 它的速度非常快,但是这个任务有更快的打包/解包配方吗?
我尝试了打包/解压缩组合,并对这两个实现进行了基准测试。 二手CPU时间几乎相同;也许有一些我不知道的快速技巧?
以下是我的基准测试方法:
#!/usr/bin/env perl
use 5.012;
use strict;
use List::Util qw/sum/;
use Benchmark qw/timethese/;
timethese ( 1000000, {
list_util => sub {
my $CheckDigit = "999989989";
do {
$CheckDigit = sum( unpack( 'AAAAAAAAA', $CheckDigit ) );
} while ( $CheckDigit > 9 );
},
perl_only => sub {
my $CheckDigit = "999989989";
do {
$CheckDigit = unpack( '%16S*', pack( 'S9', unpack( 'AAAAAAAAA', $CheckDigit ) ) );
} while ( $CheckDigit > 9 );
},
} );
答案 0 :(得分:6)
unpack不是拆分字符串的最快方法:
#!/usr/bin/env perl
use strict;
use List::Util qw/sum/;
use Benchmark qw/cmpthese/;
cmpthese ( -3, {
list_util => sub {
my $CheckDigit = "999989989";
do {
$CheckDigit = sum( unpack( 'AAAAAAAAA', $CheckDigit ) );
} while ( $CheckDigit > 9 );
},
unpack_star => sub {
my $CheckDigit = "999989989";
do {
$CheckDigit = sum( unpack( '(A)*', $CheckDigit ) );
} while ( $CheckDigit > 9 );
},
re => sub {
my $CheckDigit = "999989989";
do {
$CheckDigit = sum( $CheckDigit =~ /(.)/g );
} while ( $CheckDigit > 9 );
},
split => sub {
my $CheckDigit = "999989989";
do {
$CheckDigit = sum( split //, $CheckDigit );
} while ( $CheckDigit > 9 );
},
perl_only => sub {
my $CheckDigit = "999989989";
do {
$CheckDigit = unpack( '%16S*', pack( 'S9', unpack( 'AAAAAAAAA', $CheckDigit ) ) );
} while ( $CheckDigit > 9 );
},
modulo => sub {
my $CheckDigit = "999989989";
$CheckDigit = ($CheckDigit+0) && ($CheckDigit % 9 || 9);
},
} );
产地:
Rate perl_only list_util re unpack_star split modulo
perl_only 89882/s -- -15% -30% -45% -54% -97%
list_util 105601/s 17% -- -17% -35% -45% -97%
re 127656/s 42% 21% -- -21% -34% -96%
unpack_star 162308/s 81% 54% 27% -- -16% -95%
split 193405/s 115% 83% 52% 19% -- -94%
modulo 3055254/s 3299% 2793% 2293% 1782% 1480% --
如果您必须将字符串拆分为字符,那么split
看起来是您最好的选择。
但是反复对数字求和是almost the same as taking the number mod 9(正如mirod指出的那样)。区别在于$Digits % 9
生成0而不是9.一个修复($Digits-1) % 9 + 1
的公式,但(至少在Perl中)不适用于全零情况(它产生9而不是0)。在Perl中工作的表达式是($Digits+0) && ($Digits % 9 || 9)
。第一项处理全零情况,第二项处理正常情况,第三项处理0到9。
答案 1 :(得分:4)
如果没有使用打包/解压缩并使用简单的拆分,或者在数学上稍微聪明并且使用modulo,那么它是不是太聪明了?这会破坏所有其他方法的废话?
#!/usr/bin/env perl
use strict;
use List::Util qw/sum/;
use Benchmark qw/timethese/;
my $D="99949596";
timethese ( 1000000, {
naive => sub {
my $CheckDigit= $D;
do {
$CheckDigit = sum( split//, $CheckDigit );
} while ( $CheckDigit > 9 );
},
list_util => sub {
my $CheckDigit = $D;
do {
$CheckDigit = sum( unpack( 'AAAAAAAAA', $CheckDigit ) );
} while ( $CheckDigit > 9 );
},
perl_only => sub {
my $CheckDigit = $D;
do {
$CheckDigit = unpack( '%16S*', pack( 'S9', unpack( 'AAAAAAAAA', $CheckDigit ) ) );
} while ( $CheckDigit > 9 );
},
modulo => sub {
my $CheckDigit = $D % 9;
},
} );
结果:
Benchmark: timing 1000000 iterations of list_util, modulo, naive, perl_only...
list_util: 5 wallclock secs ( 4.62 usr + 0.00 sys = 4.62 CPU) @ 216450.22/s (n=1000000)
modulo: -1 wallclock secs ( 0.07 usr + 0.00 sys = 0.07 CPU) @ 14285714.29/s (n=1000000)
(warning: too few iterations for a reliable count)
naive: 3 wallclock secs ( 2.79 usr + 0.00 sys = 2.79 CPU) @ 358422.94/s (n=1000000)
perl_only: 6 wallclock secs ( 5.18 usr + 0.00 sys = 5.18 CPU) @ 193050.19/s (n=1000000)