我正在尝试解决这个问题,请帮我,我有这个数据集:
df1= pd.DataFrame(data={'col1': ['a','b','c','d'],
'col2': [1,2,np.nan,4]})
df2=pd.DataFrame(data={'col1': ['a','b','b','a','f','c','e','d','e','a'],
'col2':[1,3,2,3,6,4,1,2,5,2]})
df1
col1 col2
0 a 1.0
1 b 2.0
2 c NaN
3 d 4.0
df2
col1 col2
0 a 1
1 b 3
2 b 2
3 a 3
4 f 6
5 c 4
6 e 1
7 d 2
8 e 5
9 a 2
我尝试过
df1[df1['col2'].isna()] = pd.merge(df1, df2, on=['col1'], how='left')
我希望如此
col1 col2
0 a 1.0
1 b 2.0
2 c 4
3 d 4.0
但是,我得到了这个
col1 col2
0 a 1.0
1 b 2.0
2 a NaN
3 d 4.0
然后我尝试了
for x in zip(df1,df2):
if x in df1['col2'] == x in df2['col2']:
df1['col1'][df1['col1'].isna()] = df2['col1'].where(df1['col2'][x] == df2['col2'][x])
但是得到了
col1 col2
0 a 1.0
1 b 2.0
2 c NaN
3 d 4.0
我也尝试过this answer
但还是没有
答案 0 :(得分:2)
将Series.map
用于col1
和Series
的匹配值,并将唯一列col1
和DataFrame.drop_duplicates
的匹配值替换为Series.fillna
:
s = df2.drop_duplicates('col1').set_index('col1')['col2']
print (s)
col1
a 1
b 3
f 6
c 4
e 1
d 2
Name: col2, dtype: int64
print (df1['col1'].map(s))
0 1
1 3
2 4
3 2
Name: col1, dtype: int64
df1['col2'] = df1['col2'].fillna(df1['col1'].map(s))
print (df1)
col1 col2
0 a 1.0
1 b 2.0
2 c 4.0
3 d 4.0