我具有以下形式的数据框:(除了这些列以外,还有很多列-为简洁起见,将其删除)
import pandas as pd
headers = ['A','B','C']
data = [['p1','','v1'],
['p2','','ba'],
['p3',9,'fg'],
['p1',1,'fg'],
['p2',45,'af'],
['p3',1,'fg'],
['p1',1,'hf']
]
df = pd.DataFrame(data,columns=headers)
A B C
0 p1 v1
1 p2 ba
2 p3 9 fg
3 p1 1 fg
4 p2 45 af
5 p3 1 fg
6 p1 1 hf
B列中有重复项,因此 latest 值应为非NA(但可能不是)
我想用最新的非NA值替换col B值。像这样:
unique_people = df['A'].unique()
for person in unique_people:
sub_df = df[df['A'] == person]
val = sub_df['B'].tail(1).values
df['A'][df['A'] == person] = val # this also doesnt work because its not inplace
我确定有更好的方法可以做到,但是我不确定如何做。谁能指出更好的方法?
谢谢!
答案 0 :(得分:1)
首先将空字符串替换为缺失值,然后将GroupBy.transform
与GroupBy.last
一起用于每个组的最后一个非缺失值:
headers = ['A','B','C']
data = [['p1','','v1'],
['p2','','ba'],
['p3',9,'fg'],
['p1',1,'fg'],
['p2',45,'af'],
['p3',1,'fg'],
['p1','','hf']
]
df = pd.DataFrame(data,columns=headers)
df['B'] = df['B'].replace('', np.nan)
df['B'] = df.groupby('A')['B'].transform('last')
print (df)
A B C
0 p1 1.0 v1
1 p2 45.0 ba
2 p3 1.0 fg
3 p1 1.0 fg
4 p2 45.0 af
5 p3 1.0 fg
6 p1 1.0 hf