如何使用分组依据对相似值进行分组

时间:2020-08-17 21:37:28

标签: python-3.x pandas pandas-groupby

我有以下代码段

import pdfplumber, requests
from io import BytesIO
import pandas as pd

def get_title_liked_txt(page: object):
    df = pd.DataFrame(page.chars)
    title_liked_fontsizes = df['size'].value_counts().sort_index(ascending=False).index[:2]
    df = df[df['size'].isin(title_liked_fontsizes)]
    title_like_txt_df = df.groupby(['top', 'bottom'])['text'].apply(''.join).reset_index()
    print(title_like_txt_df)

url = 'https://www1.hkexnews.hk/listedco/listconews/sehk/2020/0417/2020041700700.pdf'
response = requests.get(url)
stream = BytesIO(response.content)
plumber_pdf = pdfplumber.open(stream)
page = plumber_pdf.pages[111]
get_title_liked_txt(page)

它产生

       top   bottom                         text
0   59.735   77.735                            ’
1   59.879   77.879  INDEPENDENT AUDITORS REPORT
2  311.317  322.317                      Opinion
3  554.151  565.151            Basis for opinion

我想给topbottom分组留出一定的距离。

将它们分组时,如果当前行与上一行之间的差小于0.5,则将它们视为相同的值。这样结果中的row_0将相应地加入。

这是预期的结果

       top   bottom                         text
0   59.879   77.879  INDEPENDENT AUDITOR’S REPORT
1  311.317  322.317                      Opinion
2  554.151  565.151            Basis for opinion

我发现了这样的东西

cond = df['top'].diff().abs() < 0.5

但是如果满足此条件,我不确定如何替换以前的值。任何建议将不胜感激。

编辑:其他信息

这是分组之前的数据框

                   fontname    adv  upright       x0       y0       x1       y1   width  height    size object_type  page_number  stroking_color non_stroking_color text      top   bottom     doctop
94    MBPGXA+TrajanPro-Bold  0.452        1   25.512  729.995   33.648  747.995   8.136  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    I   59.879   77.879  89733.893
95    MBPGXA+TrajanPro-Bold  0.947        1   33.198  729.995   50.244  747.995  17.046  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    N   59.879   77.879  89733.893
96    MBPGXA+TrajanPro-Bold  0.936        1   49.794  729.995   66.642  747.995  16.848  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    D   59.879   77.879  89733.893
97    MBPGXA+TrajanPro-Bold  0.632        1   66.192  729.995   77.568  747.995  11.376  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    E   59.879   77.879  89733.893
98    MBPGXA+TrajanPro-Bold  0.655        1   77.118  729.995   88.908  747.995  11.790  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    P   59.879   77.879  89733.893
99    MBPGXA+TrajanPro-Bold  0.632        1   88.458  729.995   99.834  747.995  11.376  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    E   59.879   77.879  89733.893
100   MBPGXA+TrajanPro-Bold  0.947        1   99.384  729.995  116.430  747.995  17.046  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    N   59.879   77.879  89733.893
101   MBPGXA+TrajanPro-Bold  0.936        1  115.980  729.995  132.828  747.995  16.848  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    D   59.879   77.879  89733.893
102   MBPGXA+TrajanPro-Bold  0.632        1  132.378  729.995  143.754  747.995  11.376  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    E   59.879   77.879  89733.893
103   MBPGXA+TrajanPro-Bold  0.947        1  143.304  729.995  160.350  747.995  17.046  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    N   59.879   77.879  89733.893
104   MBPGXA+TrajanPro-Bold  0.710        1  159.900  729.995  172.680  747.995  12.780  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    T   59.879   77.879  89733.893
105   MBPGXA+TrajanPro-Bold  0.300        1  172.230  729.995  177.630  747.995   5.400  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)        59.879   77.879  89733.893
106   MBPGXA+TrajanPro-Bold  0.700        1  177.180  729.995  189.780  747.995  12.600  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    A   59.879   77.879  89733.893
107   MBPGXA+TrajanPro-Bold  0.852        1  189.330  729.995  204.666  747.995  15.336  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    U   59.879   77.879  89733.893
108   MBPGXA+TrajanPro-Bold  0.936        1  204.216  729.995  221.064  747.995  16.848  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    D   59.879   77.879  89733.893
109   MBPGXA+TrajanPro-Bold  0.452        1  220.614  729.995  228.750  747.995   8.136  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    I   59.879   77.879  89733.893
110   MBPGXA+TrajanPro-Bold  0.710        1  228.300  729.995  241.080  747.995  12.780  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    T   59.879   77.879  89733.893
111   MBPGXA+TrajanPro-Bold  0.927        1  240.630  729.995  257.316  747.995  16.686  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    O   59.879   77.879  89733.893
112   MBPGXA+TrajanPro-Bold  0.755        1  256.866  729.995  270.456  747.995  13.590  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    R   59.879   77.879  89733.893
113   MBPGXA+TrajanPro-Bold  0.218        1  270.006  730.139  273.930  748.139   3.924  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    ’   59.735   77.735  89733.749
114   MBPGXA+TrajanPro-Bold  0.582        1  273.480  729.995  283.956  747.995  10.476  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    S   59.879   77.879  89733.893
115   MBPGXA+TrajanPro-Bold  0.300        1  283.506  729.995  288.906  747.995   5.400  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)        59.879   77.879  89733.893
116   MBPGXA+TrajanPro-Bold  0.755        1  288.456  729.995  302.046  747.995  13.590  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    R   59.879   77.879  89733.893
117   MBPGXA+TrajanPro-Bold  0.632        1  301.596  729.995  312.972  747.995  11.376  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    E   59.879   77.879  89733.893
118   MBPGXA+TrajanPro-Bold  0.655        1  312.522  729.995  324.312  747.995  11.790  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    P   59.879   77.879  89733.893
119   MBPGXA+TrajanPro-Bold  0.927        1  323.862  729.995  340.548  747.995  16.686  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    O   59.879   77.879  89733.893
120   MBPGXA+TrajanPro-Bold  0.755        1  340.098  729.995  353.688  747.995  13.590  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    R   59.879   77.879  89733.893
121   MBPGXA+TrajanPro-Bold  0.710        1  353.238  729.995  366.018  747.995  12.780  18.000  18.000        char          112  (0, 0, 0, 0.6)       (0, 0, 0, 1)    T   59.879   77.879  89733.893
416   MBPGXA+TrajanPro-Bold  0.927        1   56.693  485.557   66.890  496.557  10.197  11.000  11.000        char          112            None                [1]    O  311.317  322.317  89985.331
417   MBPGXA+TrajanPro-Bold  0.596        1   67.220  485.557   73.776  496.557   6.556  11.000  11.000        char          112            None                [1]    p  311.317  322.317  89985.331
418   MBPGXA+TrajanPro-Bold  0.407        1   74.106  485.557   78.583  496.557   4.477  11.000  11.000        char          112            None                [1]    i  311.317  322.317  89985.331
419   MBPGXA+TrajanPro-Bold  0.841        1   78.913  485.557   88.164  496.557   9.251  11.000  11.000        char          112            None                [1]    n  311.317  322.317  89985.331
420   MBPGXA+TrajanPro-Bold  0.407        1   88.494  485.557   92.971  496.557   4.477  11.000  11.000        char          112            None                [1]    i  311.317  322.317  89985.331
421   MBPGXA+TrajanPro-Bold  0.827        1   93.301  485.557  102.398  496.557   9.097  11.000  11.000        char          112            None                [1]    o  311.317  322.317  89985.331
422   MBPGXA+TrajanPro-Bold  0.841        1  102.728  485.557  111.979  496.557   9.251  11.000  11.000        char          112            None                [1]    n  311.317  322.317  89985.331
2200  MBPGXA+TrajanPro-Bold  0.707        1   56.693  242.723   64.470  253.723   7.777  11.000  11.000        char          112            None                [1]    B  554.151  565.151  90228.165
2201  MBPGXA+TrajanPro-Bold  0.632        1   64.800  242.723   71.752  253.723   6.952  11.000  11.000        char          112            None                [1]    a  554.151  565.151  90228.165
2202  MBPGXA+TrajanPro-Bold  0.540        1   72.082  242.723   78.022  253.723   5.940  11.000  11.000        char          112            None                [1]    s  554.151  565.151  90228.165
2203  MBPGXA+TrajanPro-Bold  0.407        1   78.352  242.723   82.829  253.723   4.477  11.000  11.000        char          112            None                [1]    i  554.151  565.151  90228.165
2204  MBPGXA+TrajanPro-Bold  0.540        1   83.159  242.723   89.099  253.723   5.940  11.000  11.000        char          112            None                [1]    s  554.151  565.151  90228.165
2205  MBPGXA+TrajanPro-Bold  0.300        1   89.429  242.723   92.729  253.723   3.300  11.000  11.000        char          112            None                [1]       554.151  565.151  90228.165
2206  MBPGXA+TrajanPro-Bold  0.567        1   93.389  242.723   99.626  253.723   6.237  11.000  11.000        char          112            None                [1]    f  554.151  565.151  90228.165
2207  MBPGXA+TrajanPro-Bold  0.827        1   99.956  242.723  109.053  253.723   9.097  11.000  11.000        char          112            None                [1]    o  554.151  565.151  90228.165
2208  MBPGXA+TrajanPro-Bold  0.686        1  109.383  242.723  116.929  253.723   7.546  11.000  11.000        char          112            None                [1]    r  554.151  565.151  90228.165
2209  MBPGXA+TrajanPro-Bold  0.300        1  117.259  242.723  120.559  253.723   3.300  11.000  11.000        char          112            None                [1]       554.151  565.151  90228.165
2210  MBPGXA+TrajanPro-Bold  0.827        1  121.219  242.723  130.316  253.723   9.097  11.000  11.000        char          112            None                [1]    o  554.151  565.151  90228.165
2211  MBPGXA+TrajanPro-Bold  0.596        1  130.646  242.723  137.202  253.723   6.556  11.000  11.000        char          112            None                [1]    p  554.151  565.151  90228.165
2212  MBPGXA+TrajanPro-Bold  0.407        1  137.532  242.723  142.009  253.723   4.477  11.000  11.000        char          112            None                [1]    i  554.151  565.151  90228.165
2213  MBPGXA+TrajanPro-Bold  0.841        1  142.339  242.723  151.590  253.723   9.251  11.000  11.000        char          112            None                [1]    n  554.151  565.151  90228.165
2214  MBPGXA+TrajanPro-Bold  0.407        1  151.920  242.723  156.397  253.723   4.477  11.000  11.000        char          112            None                [1]    i  554.151  565.151  90228.165
2215  MBPGXA+TrajanPro-Bold  0.827        1  156.727  242.723  165.824  253.723   9.097  11.000  11.000        char          112            None                [1]    o  554.151  565.151  90228.165
2216  MBPGXA+TrajanPro-Bold  0.841        1  166.154  242.723  175.405  253.723   9.251  11.000  11.000        char          112            None                [1]    n  554.151  565.151  90228.165

2 个答案:

答案 0 :(得分:0)

尝试:

def get_title_liked_txt(page: object):
    df = pd.DataFrame(page.chars)
    title_liked_fontsizes = df['size'].value_counts().sort_index(ascending=False).index[:2]
    df = df[df['size'].isin(title_liked_fontsizes)]
    df['cat'] = df.top.diff().gt(0.5).cumsum() + 1
    df_temp = df.groupby(['cat'])['text'].apply(''.join).reset_index()
    df_temp = df_temp.merge(df.groupby('cat')['top'].first().reset_index(),on='cat')
    df_temp = df_temp.merge(df.groupby('cat')['bottom'].first().reset_index(),on='cat')
    return df_temp[['top', 'bottom', 'text']]
    
get_title_liked_txt(page)

       top   bottom                         text
0   59.879   77.879  INDEPENDENT AUDITOR'S REPORT
1  311.317  322.317                      Opinion
2  554.151  565.151            Basis for opinion

答案 1 :(得分:0)

您可以使用舍入值创建两个新列,然后对舍入值进行分组并显示最后一个值。

df['top_r'] = df['top'].round()
df['bottom_r']=df['bottom'].round()
df.groupby(['top_r','bottom_r']).last()

top_r bottom_r顶部底部的文本 60.0 78.0 59.879 77.879独立审计师报告 311.0 322.0 311.317 322.317意见 554.0 565.0 554.151 565.151意见依据