我建立了一个简单的lstm网络,并使用了costom mape损失,如下所示:
def custom_mape(y_true, y_pred):
mapes = K.switch(K.equal(y_true, 0), y_true, 100*K.abs(y_true - y_pred)/y_true)
return K.mean(mapes, axis=-1)
损失从一开始就变成了微不足道:
Model: "sequential_93"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lstm_163 (LSTM) (None, 14, 1) 296
=================================================================
Total params: 296
Trainable params: 296
Non-trainable params: 0
_________________________________________________________________
Epoch 1/50
410/410 [==============================] - 3s 7ms/step - loss: nan - val_loss: nan
Epoch 2/50
410/410 [==============================] - 2s 6ms/step - loss: nan - val_loss: nan
Epoch 3/50
410/410 [==============================] - 2s 6ms/step - loss: nan - val_loss: nan
Epoch 4/50
410/410 [==============================] - 2s 6ms/step - loss: nan - val_loss: nan
Epoch 5/50
410/410 [==============================] - 2s 6ms/step - loss: nan - val_loss: nan
Epoch 6/50
410/410 [==============================] - 2s 5ms/step - loss: nan - val_loss: nan
Epoch 7/50
410/410 [==============================] - 3s 6ms/step - loss: nan - val_loss: nan
Epoch 8/50
410/410 [==============================] - 2s 5ms/step - loss: nan - val_loss: nan
Epoch 9/50
410/410 [==============================] - 2s 5ms/step - loss: nan - val_loss: nan
Epoch 10/50
410/410 [==============================] - 2s 5ms/step - loss: nan - val_loss: nan
以下是我尝试过的一些方法:
此外,我对y使用了最小-最大归一化,并且y的示例如下:
[[1.84368752e-05],
[9.86574098e-04],
[8.09853832e-04]]
答案 0 :(得分:0)
K.abs(y_true - y_pred)/y_true
在这里,如果y_true
是0
,您将得到nan,因为您正尝试除以0
。