我正在尝试使用Spark Streaming从Kafka读取avro数据,但是收到以下错误消息:
Streaming Query Exception caught!: org.apache.spark.sql.streaming.StreamingQueryException: Job aborted.
=== Streaming Query ===
Identifier: [id = 8b54c92d-6bbc-4dbc-84d0-55b762c21ba2, runId = 4bc92b3c-343e-4886-b0bc-0777b89f9ec8]
Current Committed Offsets: {KafkaV2[Subscribe[customer-avro4]]: {"customer-avro":{"0":17}}}
Current Available Offsets: {KafkaV2[Subscribe[customer-avro4]]: {"customer-avro":{"0":20}}}
Current State: ACTIVE
Thread State: RUNNABLE
关于这个问题可能是什么以及如何解决的任何想法?代码如下(灵感来自xebia-france spark-structured-streaming-blog)。实际上,我认为它已经运行得更早了,但是现在出现了问题。
import com.databricks.spark.avro.SchemaConverters
import io.confluent.kafka.schemaregistry.client.{CachedSchemaRegistryClient, SchemaRegistryClient}
import io.confluent.kafka.serializers.AbstractKafkaAvroDeserializer
import org.apache.avro.Schema
import org.apache.avro.generic.GenericRecord
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.streaming.StreamingQueryException
object AvroConsumer {
private val topic = "customer-avro4"
private val kafkaUrl = "http://localhost:9092"
private val schemaRegistryUrl = "http://localhost:8081"
private val schemaRegistryClient = new CachedSchemaRegistryClient(schemaRegistryUrl, 128)
private val kafkaAvroDeserializer = new AvroDeserializer(schemaRegistryClient)
private val avroSchema = schemaRegistryClient.getLatestSchemaMetadata(topic + "-value").getSchema
private val sparkSchema = SchemaConverters.toSqlType(new Schema.Parser().parse(avroSchema))
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder
.appName("ConfluentConsumer")
.master("local[*]")
.getOrCreate()
spark.sparkContext.setLogLevel("ERROR")
spark.udf.register("deserialize", (bytes: Array[Byte]) =>
DeserializerWrapper.deserializer.deserialize(bytes)
)
val kafkaDataFrame = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", kafkaUrl)
.option("subscribe", topic)
.load()
val valueDataFrame = kafkaDataFrame.selectExpr("""deserialize(value) AS message""")
import org.apache.spark.sql.functions._
val formattedDataFrame = valueDataFrame.select(
from_json(col("message"), sparkSchema.dataType).alias("parsed_value"))
.select("parsed_value.*")
val writer = formattedDataFrame
.writeStream
.format("parquet")
.option("checkpointLocation", "hdfs://localhost:9000/data/spark/parquet/checkpoint")
while (true) {
val query = writer.start("hdfs://localhost:9000/data/spark/parquet/total")
try {
query.awaitTermination()
}
catch {
case e: StreamingQueryException => println("Streaming Query Exception caught!: " + e);
}
}
}
object DeserializerWrapper {
val deserializer: AvroDeserializer = kafkaAvroDeserializer
}
class AvroDeserializer extends AbstractKafkaAvroDeserializer {
def this(client: SchemaRegistryClient) {
this()
this.schemaRegistry = client
}
override def deserialize(bytes: Array[Byte]): String = {
val genericRecord = super.deserialize(bytes).asInstanceOf[GenericRecord]
genericRecord.toString
}
}
}
答案 0 :(得分:0)
弄清楚了-问题不是我直接考虑的Spark-Kafka集成问题,而是hdfs文件系统中的检查点信息。删除并重新创建hdfs中的checkpoint文件夹为我解决了这个问题。