我正在寻找一种Pythonic方法来获取(方形)矩阵的所有对角线,表示为列表列表。
假设我有以下矩阵:
matrix = [[-2, 5, 3, 2],
[ 9, -6, 5, 1],
[ 3, 2, 7, 3],
[-1, 8, -4, 8]]
然后大对角线很容易:
l = len(matrix[0])
print [matrix[i][i] for i in range(l)] # [-2, -6, 7, 8]
print [matrix[l-1-i][i] for i in range(l-1,-1,-1)] # [ 2, 5, 2, -1]
但是我无法想出一种生成所有对角线的方法。我正在寻找的输出是:
[[-2], [9, 5], [3,-6, 3], [-1, 2, 5, 2], [8, 7, 1], [-4, 3], [8],
[2], [3,1], [5, 5, 3], [-2, -6, 7, 8], [9, 2, -4], [3, 8], [-1]]
答案 0 :(得分:50)
在numpy中可能有比下面更好的方法,但我对它还不太熟悉:
import numpy as np
matrix = np.array(
[[-2, 5, 3, 2],
[ 9, -6, 5, 1],
[ 3, 2, 7, 3],
[-1, 8, -4, 8]])
diags = [matrix[::-1,:].diagonal(i) for i in range(-3,4)]
diags.extend(matrix.diagonal(i) for i in range(3,-4,-1))
print [n.tolist() for n in diags]
[[-2], [9, 5], [3, -6, 3], [-1, 2, 5, 2], [8, 7, 1], [-4, 3], [8], [2], [3, 1], [5, 5, 3], [-2, -6, 7, 8], [9, 2, -4], [3, 8], [-1]]
修改:已更新,可针对任何矩阵大小进行概括。
import numpy as np
# Alter dimensions as needed
x,y = 3,4
# create a default array of specified dimensions
a = np.arange(x*y).reshape(x,y)
print a
print
# a.diagonal returns the top-left-to-lower-right diagonal "i"
# according to this diagram:
#
# 0 1 2 3 4 ...
# -1 0 1 2 3
# -2 -1 0 1 2
# -3 -2 -1 0 1
# :
#
# You wanted lower-left-to-upper-right and upper-left-to-lower-right diagonals.
#
# The syntax a[slice,slice] returns a new array with elements from the sliced ranges,
# where "slice" is Python's [start[:stop[:step]] format.
# "::-1" returns the rows in reverse. ":" returns the columns as is,
# effectively vertically mirroring the original array so the wanted diagonals are
# lower-right-to-uppper-left.
#
# Then a list comprehension is used to collect all the diagonals. The range
# is -x+1 to y (exclusive of y), so for a matrix like the example above
# (x,y) = (4,5) = -3 to 4.
diags = [a[::-1,:].diagonal(i) for i in range(-a.shape[0]+1,a.shape[1])]
# Now back to the original array to get the upper-left-to-lower-right diagonals,
# starting from the right, so the range needed for shape (x,y) was y-1 to -x+1 descending.
diags.extend(a.diagonal(i) for i in range(a.shape[1]-1,-a.shape[0],-1))
# Another list comp to convert back to Python lists from numpy arrays,
# so it prints what you requested.
print [n.tolist() for n in diags]
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[0], [4, 1], [8, 5, 2], [9, 6, 3], [10, 7], [11], [3], [2, 7], [1, 6, 11], [0, 5, 10], [4, 9], [8]]
答案 1 :(得分:18)
从向上和向右倾斜的对角线开始。
如果(x,y)是矩阵内的直角坐标,则需要转换为/从坐标方案(p,q)转换,其中p是对角线的数量,q是沿对角线的索引。 (所以p = 0是[-2]对角线,p = 1是[9,5]对角线,p = 2是[3,-6,3]对角线,依此类推。)
要将(p,q)转换为(x,y),您可以使用:
x = q
y = p - q
尝试插入p和q的值,看看它是如何工作的。
现在你只是循环...对于p从0到2N-1,q从max(0,p-N + 1)到min(p,N-1)。将p,q转换为x,y并打印。
然后对于其他对角线,重复循环但使用不同的变换:
x = N - 1 - q
y = p - q
(这实际上只是左右翻转矩阵。)
抱歉,我实际上并没有用Python编写代码。 : - )
答案 2 :(得分:10)
这是针对Moe
的a similar question,{{3}}。
我首先制作简单的函数来复制任何矩形矩阵的行或列。
def get_rows(grid):
return [[c for c in r] for r in grid]
def get_cols(grid):
return zip(*grid)
通过这两个函数,我可以通过在每行的开头/结尾添加一个递增/递减缓冲区来获得对角线。然后我获取此缓冲网格的列,然后删除每列上的缓冲区。即)
1 2 3 |X|X|1|2|3| | | |1|2|3|
4 5 6 => |X|4|5|6|X| => | |4|5|6| | => [[7],[4,8],[1,5,9],[2,6],[3]]
7 8 9 |7|8|9|X|X| |7|8|9| | |
def get_backward_diagonals(grid):
b = [None] * (len(grid) - 1)
grid = [b[i:] + r + b[:i] for i, r in enumerate(get_rows(grid))]
return [[c for c in r if c is not None] for r in get_cols(grid)]
def get_forward_diagonals(grid):
b = [None] * (len(grid) - 1)
grid = [b[:i] + r + b[i:] for i, r in enumerate(get_rows(grid))]
return [[c for c in r if c is not None] for r in get_cols(grid)]
答案 3 :(得分:7)
我遇到了另一个有趣的解决方案。 通过查看x和y的组合,可以立即发现行,列,前向和后向对角线。
Column = x Row = y F-Diag = x+y B-Diag = x-y B-Diag` = x-y-MIN
| 0 1 2 | 0 1 2 | 0 1 2 | 0 1 2 | 0 1 2
--|--------- --|--------- --|--------- --|--------- --|---------
0 | 0 1 2 0 | 0 0 0 0 | 0 1 2 0 | 0 1 2 0 | 2 3 4
1 | 0 1 2 1 | 1 1 1 1 | 1 2 3 1 |-1 0 1 1 | 1 2 3
2 | 0 1 2 2 | 2 2 2 2 | 2 3 4 2 |-2 -1 0 2 | 0 1 2
从图中可以看出,每个对角线和轴都可以使用这些方程进行唯一识别。从每个表中获取每个唯一编号,并为该标识符创建一个容器。
请注意,向后对角线已偏移以从零索引处开始,并且向前对角线的长度始终等于向后对角线的长度。
test = [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
max_col = len(test[0])
max_row = len(test)
cols = [[] for _ in range(max_col)]
rows = [[] for _ in range(max_row)]
fdiag = [[] for _ in range(max_row + max_col - 1)]
bdiag = [[] for _ in range(len(fdiag))]
min_bdiag = -max_row + 1
for x in range(max_col):
for y in range(max_row):
cols[x].append(test[y][x])
rows[y].append(test[y][x])
fdiag[x+y].append(test[y][x])
bdiag[x-y-min_bdiag].append(test[y][x])
print(cols)
print(rows)
print(fdiag)
print(bdiag)
将打印
[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
[[1], [2, 4], [3, 5, 7], [6, 8, 10], [9, 11], [12]]
[[10], [7, 11], [4, 8, 12], [1, 5, 9], [2, 6], [3]]
答案 4 :(得分:4)
我最近重新发明了这个轮子。这是一个易于重用/扩展的方法,可以在方形列表中找到对角线:
def get_diagonals(grid, bltr = True):
dim = len(grid)
assert dim == len(grid[0])
return_grid = [[] for total in xrange(2 * len(grid) - 1)]
for row in xrange(len(grid)):
for col in xrange(len(grid[row])):
if bltr: return_grid[row + col].append(grid[col][row])
else: return_grid[col - row + (dim - 1)].append(grid[row][col])
return return_grid
假设列表索引:
00 01 02 03
10 11 12 13
20 21 22 23
30 31 32 33
然后设置bltr = True
(默认值),返回从左下角到右上角的对角线,即
00 # row + col == 0
10 01 # row + col == 1
20 11 02 # row + col == 2
30 21 12 03 # row + col == 3
31 22 13 # row + col == 4
32 23 # row + col == 5
33 # row + col == 6
设置bltr = False
,从左下角到右上角返回对角线,即
30 # (col - row) == -3
20 31 # (col - row) == -2
10 21 32 # (col - row) == -1
00 11 22 33 # (col - row) == 0
01 12 23 # (col - row) == +1
02 13 # (col - row) == +2
03 # (col - row) == +3
Here's a runnable version使用OP的输入矩阵。
答案 5 :(得分:1)
这仅适用于宽度和高度相等的基质。 但它也不依赖于任何第三方。
matrix = [[11, 2, 4],[4, 5, 6],[10, 8, -12]]
# only works for diagnoals of equal width and height
def forward_diagonal(matrix):
if not isinstance(matrix, list):
raise TypeError("Must be of type list")
results = []
x = 0
for k, row in enumerate(matrix):
# next diag is (x + 1, y + 1)
for i, elm in enumerate(row):
if i == 0 and k == 0:
results.append(elm)
break
if (x + 1 == i):
results.append(elm)
x = i
break
return results
print 'forward diagnoals', forward_diagonal(matrix)
答案 6 :(得分:1)
Python方法
对于纯Python实现,我建议在1D模式下工作。
W, H = len(mat[0]), len(mat)
idx = range(W-1) + range(W-1, W*H, W)
rng = range(1, W) + range(H, 0, -1)
rng = map(lambda x: x if (x < min(W, H)) else min(W, H), rng)
dia = [[i + (W-1) * m for m in xrange(r)] for i, r in zip(idx, rng)]
此处dia
返回每个对角线的索引列表。要检索相应的值:
arr = [e for row in mat for e in row] #Flatten the matrix
for d in dia:
print [arr[e] for e in d][::-1]
[-2]
[9, 5]
[3, -6, 3]
[-1, 2, 5, 2]
[8, 7, 1]
[-4, 3]
[8]
如果要以相反的方向返回值:
arr2 = [e for row in zip(*mat[::-1]) for e in row] #Flatten and rotate the matrix by 90°
for d in dia[::-1]:
print [arr2[e] for e in d]
[2]
[3, 1]
[5, 5, 3]
[-2, -6, 7, 8]
[9, 2, -4]
[3, 8]
[-1]
脾气暴躁的方法
tril = [np.flip(np.fliplr(mat).diagonal(n)) for n in xrange(mat.shape[0])][::-1]
trir = [np.flipud(mat).diagonal(n) for n in xrange(1, mat.shape[0])]
dia = tril + trir
[array([-2]),
array([9, 5]),
array([ 3, -6, 3]),
array([-1, 2, 5, 2]),
array([8, 7, 1]),
array([-4, 3]),
array([8])]
答案 7 :(得分:1)
尝试一下:
import numpy as np
matrix = [[-2, 5, 3, 2],
[ 9, -6, 5, 1],
[ 3, 2, 7, 3],
[-1, 8, -4, 8]]
matrix = np.array(matrix)
matrix = np.flipud(matrix)
a = matrix.shape[0]
list_ = [np.diag(matrix, k=i).tolist() for i in range(-a+1,a)]
print(list_)
输出:
[[-2], [9, 5], [3, -6, 3], [-1, 2, 5, 2], [8, 7, 1], [-4, 3], [8]]
答案 8 :(得分:1)
我想现在有一种更简单的方法可以做到这一点。 (但只有在您已经熟悉上述答案的情况下,才使用此功能。)
from collections import defaultdict
有一个称为 defaultdict 的方法,该方法是从 collections 模块导入的,如果您不知道要拥有的密钥,则可以使用它来创建字典。 / p>
在以下情况下,我们将使用它:
导入后,您可以运行以下代码并进行检查。
rows,cols = 3,3
matrix = [[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]
diagonal1 = defaultdict(list) # For the top right to bottom left
diagonal2 = defaultdict(list) # For the top left to bottom right
for i in range(rows):
for j in range(cols):
diagonal1[i-j].append(matrix[i][j])
diagonal2[i+j].append(matrix[i][j])
print(diagonal1,'\n',diagonal2)
list 参数将为该特定键创建一个值列表。
输出如下:
defaultdict(<class 'list'>, {0: [1, 5, 9], -1: [2, 6], -2: [3], 1: [4, 8], 2: [7]})
defaultdict(<class 'list'>, {0: [1], 1: [2, 4], 2: [3, 5, 7], 3: [6, 8], 4: [9]})
现在,您可以根据需要使用两个对角线。
要了解有关defaultdict的更多信息,请使用此链接: Click here
答案 9 :(得分:0)
使用一些numpy-fu来获取主要对角线:
import numpy as np
r = np.arange(36)
r.resize((6, 6))
print(r)
r = r.reshape(len(r)**2)[::len(r)+1]
print(r)
打印:
[[ 0 1 2 3 4 5]
[ 6 7 8 9 10 11]
[12 13 14 15 16 17]
[18 19 20 21 22 23]
[24 25 26 27 28 29]
[30 31 32 33 34 35]]
[ 0 7 14 21 28 35]
答案 10 :(得分:0)
尝试使用字典
mat = [[-2, 5, 3, 2],
[ 9, -6, 5, 1],
[ 3, 2, 7, 3],
[-1, 8, -4, 8]]
dct = dict()
for i in range(len(mat)-1,-len(mat[0]),-1):
dct[i] = []
for i in range(len(mat)):
for j in range(len(mat[0])):
dct[i-j].append(mat[i][j])
print(dct)
输出:
{3: [-1], 2: [3, 8], 1: [9, 2, -4], 0: [-2, -6, 7, 8], -1: [5, 5, 3], -2: [3, 1], -3: [2]}
答案 11 :(得分:0)
使用itertools
matrix = [[-2, 5, 3, 2],
[ 9, -6, 5, 1],
[ 3, 2, 7, 3],
[-1, 8, -4, 8]]
import itertools as it
def show_diagonals(alist):
# get row/col lenght
a = len(alist)
# creating a fliped matrix
rlist = []
for r in alist:
new = r.copy()
new.reverse()
rlist.append(new)
flatten_list = list(it.chain.from_iterable(alist))
flatten_rlist = list(it.chain.from_iterable(rlist))
b = len(flatten_list)
first_diag = list(it.islice(flatten_list, 0, b+1, a+1))
second_diag = list(it.islice(flatten_rlist, 0, b+1, a+1))
return first_diag, second_diag
a, b = show_diagonals(matrix)
答案 12 :(得分:0)
从这里:np.Diagonal
np.diagonal(matrix)
答案 13 :(得分:-1)
基于上述Nemo答案的代码:
def print_diagonals(matrix):
n = len(matrix)
diagonals_1 = [] # lower-left-to-upper-right diagonals
diagonals_2 = [] # upper-left-to-lower-right diagonals
for p in range(2*n-1):
diagonals_1.append([matrix[p-q][q] for q in range(max(0, p - n + 1), min(p, n - 1) + 1)])
diagonals_2.append([matrix[n-p+q-1][q] for q in range(max(0, p - n + 1), min(p, n - 1) + 1)])
print("lower-left-to-upper-right diagonals: ", diagonals_1)
print("upper-left-to-lower-right diagonals: ", diagonals_2)
print_diagonals([
[1, 2, 1, 1],
[1, 1, 4, 1],
[1, 3, 1, 6],
[1, 7, 2, 5],
])
lower-left-to-upper-right diagonals: [[1], [1, 2], [1, 1, 1], [1, 3, 4, 1], [7, 1, 1], [2, 6], [5]]
upper-left-to-lower-right diagonals: [[1], [1, 7], [1, 3, 2], [1, 1, 1, 5], [2, 4, 6], [1, 1], [1]]