import tensorflow as tf
import numpy as np
from sklearn.model_selection import train_test_split
np.random.seed(4213)
data = np.random.randint(low=1,high=29, size=(500, 160, 160, 10))
labels = np.random.randint(low=0,high=5, size=(500, 160, 160))
nclass = len(np.unique(labels))
print (nclass)
samples, width, height, nbands = data.shape
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.25, random_state=421)
print (X_train.shape)
print (y_train.shape)
arch = tf.keras.applications.VGG16(input_shape=[width, height, nbands],
include_top=False,
weights=None)
model = tf.keras.Sequential()
model.add(arch)
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(nclass))
model.compile(optimizer = tf.keras.optimizers.Adam(0.0001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])
model.fit(X_train,
y_train,
epochs=3,
batch_size=32,
verbose=2)
res = model.predict(X_test)
print(res.shape)
为semantic segmentation
运行以上代码时,我发生了异常:
InvalidArgumentError
Incompatible shapes: [32,160,160] vs. [32]
[[node Equal (defined at c...:38) ]] [Op:__inference_train_function_1815]
tensorflow.python.framework.errors_impl.InvalidArgumentError