我正在为Keras使用以下自定义指标:
def mcor(y_true, y_pred):
#matthews_correlation
y_pred_pos = K.round(K.clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
y_pos = K.round(K.clip(y_true, 0, 1))
y_neg = 1 - y_pos
tp = K.sum(y_pos * y_pred_pos)
tn = K.sum(y_neg * y_pred_neg)
fp = K.sum(y_neg * y_pred_pos)
fn = K.sum(y_pos * y_pred_neg)
numerator = (tp * tn - fp * fn)
denominator = K.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
return numerator / (denominator + K.epsilon())
def precision(y_true, y_pred):
"""Precision metric.
Only computes a batch-wise average of precision.
Computes the precision, a metric for multi-label classification of
how many selected items are relevant.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
def recall(y_true, y_pred):
"""Recall metric.
Only computes a batch-wise average of recall.
Computes the recall, a metric for multi-label classification of
how many relevant items are selected.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def f1(y_true, y_pred):
def recall(y_true, y_pred):
"""Recall metric.
Only computes a batch-wise average of recall.
Computes the recall, a metric for multi-label classification of
how many relevant items are selected.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision(y_true, y_pred):
"""Precision metric.
Only computes a batch-wise average of precision.
Computes the precision, a metric for multi-label classification of
how many selected items are relevant.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
precision = precision(y_true, y_pred)
recall = recall(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
这是编译语句:
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy', precision, recall, f1])
使用ModelCheckpoint,当找到最佳模型时,将自动保存Keras模型。分类类别已被一键编码。
但是,当使用以下方法重新加载保存的模型时:
# load model
from keras.models import load_model
custom_obj = {'accuracy':accuracy, 'Loss':Loss, 'precision':precision, 'recall':recall, 'f1':f1}
model = load_model('Asset_3_best_model.h5', custom_objects=custom_obj)
此处列出了先前定义的自定义Keras函数中的自定义对象。
从内存中加载模型时,我观察到以下错误:
ValueError :(“无法解释指标函数标识符:”, 0.8701059222221375)
我尝试了许多不同的自定义函数,但是找不到重新加载保存的模型的解决方案。这是一个多类别时间序列的挑战,我希望了解是否存在一种更简便的方法来解决此指标计算。
答案 0 :(得分:2)
我还在努力寻找一种方法来计算二进制分类问题的F1分数。我遇到了TensorFlow的教程,它对我有用:https://www.tensorflow.org/tutorials/structured_data/imbalanced_data
尽管不是自定义,而是直接实现。
METRICS = [
keras.metrics.TruePositives(name='tp'),
keras.metrics.FalsePositives(name='fp'),
keras.metrics.TrueNegatives(name='tn'),
keras.metrics.FalseNegatives(name='fn'),
keras.metrics.BinaryAccuracy(name='accuracy'),
keras.metrics.Precision(name='precision'),
keras.metrics.Recall(name='recall'),
keras.metrics.AUC(name='auc'),
]
此后,您将必须在编译函数中添加一个参数:
model.compile(...,metrics=METRICS)
我为代码注释了tf,fp,tn,fn并得到以下输出:
Train on 2207 samples, validate on 552 samples
Epoch 1/6
- 7s - loss: 1.2502 - accuracy: 0.6357 - precision: 0.4252 - recall: 0.0688 - auc: 0.5138 - val_loss: 0.6229 - val_accuracy: 0.6667 - val_precision: 0.8000 - val_recall: 0.0214 - val_auc: 0.6800
Epoch 2/6
- 7s - loss: 0.6451 - accuracy: 0.6461 - precision: 0.7500 - recall: 0.0076 - auc: 0.5735 - val_loss: 0.6368 - val_accuracy: 0.6685 - val_precision: 0.8333 - val_recall: 0.0267 - val_auc: 0.7144
...
检查是否可以解决您的问题。如果我错过了任何事情,请告诉我。