对于keras模型,如何获得精度和召回率?

时间:2020-07-16 17:05:28

标签: python keras deep-learning

我希望为模型进行二进制图像分类时能看到精度和召回率,但是我可以找到解决方法

这是我的代码


x = base_model.output

x = tf.keras.layers.GlobalAveragePooling2D()(x)

x = tf.keras.layers.Dense(1024, activation='relu')(x) 
x = tf.keras.layers.Dense(1024, activation='relu')(x)
x = tf.keras.layers.Dense(512, activation='relu')(x)
preds = tf.keras.layers.Dense(2, activation='softmax')(x)

model = tf.keras.Model(inputs = base_model.input, outputs = preds)

for layer in model.layers[:175]:
  layer.trainable = False 

for layer in model.layers[175:]:
  layer.trainable = True  

model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['accuracy'])

history = model.fit_generator(generator=train_generator,
                              epochs=20,
                              steps_per_epoch=step_size_train,
                              validation_data = test_generator,
                              validation_steps=step_size_test)```

1 个答案:

答案 0 :(得分:1)

如果您希望在训练过程中获得精确度和召回率,则可以在模型编译期间将精确度和召回率指标添加到metrics列表中,如下所示:

model.compile(optimizer='Adam', loss='categorical_crossentropy',
              metrics=['accuracy', 
                       tf.keras.metrics.Precision(),
                       tf.keras.metrics.Recall()])

示例

input = tf.keras.layers.Input(8)
x = tf.keras.layers.Dense(4, activation='relu')(input) 
output = tf.keras.layers.Dense(2, activation='softmax')(x)

model = tf.keras.Model(inputs = input, outputs = output)
model.compile(optimizer='Adam', loss='categorical_crossentropy',
              metrics=['accuracy', 
                       tf.keras.metrics.Precision(),
                       tf.keras.metrics.Recall()])

X = np.random.randn(100,8)
y = np.random.randint(0,2, (100, 2))

model.fit(X, y, epochs=10)