我正在开发一个基于Python的GUI界面,与运行Python的机器人和Arduino Mega作为电机控制器和传感器控制器进行交互。
最初,我打算使用远程桌面从机器人加载我的GUI。由于远程桌面,这变得非常慢。我认为服务器和客户端会更好。
我的Arduino上运行sketch,可以捕获电机命令并执行它们。它还等待“Ping”命令通过,此时应检查三个不同位置的超声波传感器,然后将此信息写回服务器,服务器应捕获此数据,然后将其传递给客户端GUI。我已经完成了大部分工作,但我似乎无法将数据从服务器返回给客户端。我曾经想过一个简单的“client.recv()”可以实现这个目标,但事实并非如此。
如果我不确切知道有多少数据会回来,我该如何收到这些数据?
Arduino将数据发送为“dist1,dist2,dist3 \ n”。
这是我的Arduino代码:
#include <LiquidCrystal.h>
#include <Ping.h>
#include <Servo.h>
// Parallax Ping Unit for distance sensing.
Ping sonic(22);
// Setup LCD pins.
LiquidCrystal lcd(7, 8, 9, 10, 11, 12);
// Servo for Ping unit sweeping.
Servo PingServo;
// Setup Ping distance setting variables.
int pingDisCent;
int pingDisLeft;
int pingDisRight;
// Variable to keep commands in.
char MsgRcvd;
// Motor setup information.
int LF[] = {23,24};
int LR[] = {25,26};
int RF[] = {27,28};
int RR[] = {29,30};
// Set Debugging here
// 1 - Debug on - Motors don't turn when commands are sent.
// 0 - Debug off - Motors turn when commands are sent.
int debug = 1;
//Variables for speed
int SpdPin = 22;
int Speed = 255;
void setup()
{
Serial.begin(9600); // start serial communications
// Setup motors for output.
int i;
for(i = 0; i < 2; i++){
pinMode(LF[i], OUTPUT);
pinMode(LR[i], OUTPUT);
pinMode(RF[i], OUTPUT);
pinMode(RR[i], OUTPUT);
}
// Setup servo to sweep.
PingServo.attach(6);
PingServo.write(90);
// Set up the LCD's number of rows and columns:
lcd.begin(16, 2);
// Print a message to the LCD.
lcd.print("Waiting...");
// Setup speed pin.
pinMode(SpdPin, OUTPUT);
}
void loop()
{
if (Serial.available() > 0) //Check to see if a command is available.
{
MsgRcvd = Serial.read(); // If a command is there, see what it is.
switch (MsgRcvd)
{
case '0':
Stop();
break;
case '1':
MoveForward();
break;
case '2':
MoveLeft();
break;
case '3':
MoveRight();
break;
case '4':
MoveBackward();
break;
case '~':
active_ir();
break;
case 'M': // Check to see if we have a connection from the GUI - if so spit out information to the LCD.
lcd.clear();
lcd.print("Connected");
lcd.setCursor(0,1);
lcd.print("waiting..");
break;
case 'D':
lcd.setCursor(0,1);
lcd.print("Disconnected"); // Client disconnected - spit out a disconnect to the LCD.
break;
}
}
delay(100);
}
// ===================================
// ===== Ping Ultrasonic =====
// ===================================
void active_ir()
{
// Read to the right.
PingServo.write(30);
delay(300);
pingDisRight = sonic.inch();
delay(500);
// Read to the front.
PingServo.write(90);
delay(300);
pingDisCent = sonic.inch();
delay(500);
// Read to the left.
PingServo.write(150);
delay(300);
pingDisLeft = sonic.inch();
delay(500);
Serial.print(pingDisLeft);
Serial.print(',');
Serial.print(pingDisCent);
Serial.print(',');
Serial.println(pingDisRight);
return;
}
// ==========================================
// ====== MOTOR CONTROL =========
// ==========================================
void MoveForward()
{
lcd.clear();
lcd.setCursor(0,0);
lcd.print("Forward");
if (debug == 0){
digitalWrite(LF[0], HIGH);
digitalWrite(LF[1], LOW);
digitalWrite(LR[0], HIGH);
digitalWrite(LR[1], LOW);
digitalWrite(RF[0], HIGH);
digitalWrite(RF[1], LOW);
digitalWrite(RR[0], HIGH);
digitalWrite(RR[1], LOW);
}
}
void MoveBackward()
{
lcd.clear();
lcd.setCursor(0,0);
lcd.print("Reverse");
if (debug == 0){
analogWrite(SpdPin, Speed);
digitalWrite(LF[0], LOW);
digitalWrite(LF[1], HIGH);
digitalWrite(LR[0], LOW);
digitalWrite(LR[1], HIGH);
digitalWrite(RF[0], LOW);
digitalWrite(RF[1], HIGH);
digitalWrite(RR[0], LOW);
digitalWrite(RR[1], HIGH);
}
}
void MoveLeft()
{
lcd.clear();
lcd.setCursor(0,0);
lcd.print("Left");
if (debug == 0){
analogWrite(SpdPin, Speed);
digitalWrite(LF[0], LOW);
digitalWrite(LF[1], HIGH);
digitalWrite(LR[0], LOW);
digitalWrite(LR[1], HIGH);
digitalWrite(RF[0], HIGH);
digitalWrite(RF[1], LOW);
digitalWrite(RR[0], HIGH);
digitalWrite(RR[1], LOW);
}
}
void MoveRight()
{
lcd.clear();
lcd.setCursor(0,0);
lcd.print("Right");
if (debug == 0) {
analogWrite(SpdPin, Speed);
digitalWrite(LF[0], HIGH);
digitalWrite(LF[1], LOW);
digitalWrite(LR[0], HIGH);
digitalWrite(LR[1], LOW);
digitalWrite(RF[0], LOW);
digitalWrite(RF[1], HIGH);
digitalWrite(RR[0], LOW);
digitalWrite(RR[1], HIGH);
}
}
void Stop()
{
lcd.clear();
lcd.setCursor(0,0);
lcd.print("Stopping");
if (debug == 0){
digitalWrite(LF[0], LOW);
digitalWrite(LF[1], LOW);
digitalWrite(LR[0], LOW);
digitalWrite(LR[1], LOW);
digitalWrite(RF[0], LOW);
digitalWrite(RF[1], LOW);
digitalWrite(RR[0], LOW);
digitalWrite(RR[1], LOW);
}
}
这是我的Python服务器代码:
import serial
import socket
Serv = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
Serv.bind(('', 9000))
Serv.listen(1)
print "Listening on TCP 9000"
motor = serial.Serial('/dev/ttyUSB0', 9600, timeout=1)
print "Connected to Motor Controller: /dev/ttyUSB0"
while(1):
print "Waiting For Connection..."
connection, addr = Serv.accept()
connection.setblocking(0)
print "Connected by", addr[0]
while(1):
try:
Servdata = connection.recv(1)
break
except:
pass
if (Servdata == 'M'):
print "Entering Manual Mode"
motor.write(Servdata)
while(Servdata != 'X'):
Servdata = '9'
try:
Servdata = connection.recv(1)
except:
pass
if Servdata == 'X':
print "Exiting"
break
if Servdata == '0':
print "Stopping"
motor.write(Servdata)
if Servdata == '1':
print "Forward"
motor.write(Servdata)
if Servdata == '2':
print "Left"
motor.write(Servdata)
if Servdata == '3':
print "Right"
motor.write(Servdata)
if Servdata == '4':
motor.write(Servdata)
print "Backwards"
if Servdata == '~':
motor.write(Servdata)
retval = motor.readline()
Serv.send(retval)
else:
pass
motor.write('0')
connection.close()
print addr[0], "Closed Manual Mode"
最后但并非最不重要的是,客户端GUI代码(这也是我认为我的问题所在......):
from socket import *
from PythonCard import model
HOST = ''
PORT = 9000
ADDR = (HOST,PORT)
BUFSIZE = 4096
Client = socket (AF_INET,SOCK_STREAM)
Client.connect((ADDR))
Client.send('M')
class MainWindow(model.Background):
def on_SetSpdBtn_mouseClick(self, event):
spd = self.components.SpdSpn.value
def on_FwdBtn_mouseClick(self, event):
spd = self.components.SpdSpn.value
Client.send('1')
def on_LftBtn_mouseClick(self, event):
spd = self.components.SpdSpn.value
Client.send('2')
def on_RitBtn_mouseClick(self, event):
spd = self.components.SpdSpn.value
Client.send('3')
def on_RevBtn_mouseClick(self, event):
spd = self.components.SpdSpn.value
Client.send('4')
def on_StpBtn_mouseClick(self, event):
spd = self.components.SpdSpn.value
Client.send('0')
def on_GetPing_mouseClick(self, event):
Client.send('~')
retval = Client.recv()
ping_data = retval.strip() # Strip out the newline, if you read an entire line.
split_data = ping_data.split(',')
L_Ping = split_data[0]
R_Ping = split_data[1]
self.components.PingLeft.text = str(L_Ping)
self.components.PingRight.text = str(R_Ping)
app = model.Application(MainWindow)
app.MainLoop()
答案 0 :(得分:5)
我想我在这段代码中发现了三个问题;第一个是浪费,第二个可能是你今天来到这里的原因,第三个是为什么你认为你今天进来的原因。 :)
忙碌等待
此代码为busy waiting,用于连接数据:
connection.setblocking(0)
print "Connected by", addr[0]
while(1):
try:
Servdata = connection.recv(1)
break
except:
pass
再来一次:
while(Servdata != 'X'):
Servdata = '9'
try:
Servdata = connection.recv(1)
except:
pass
# ...
else:
pass
这会像疯狂一样燃烧CPU周期;更好的希望你不是靠电池供电。它也不会购买你的任何东西;你也可以打电话给阻止 recv()
。让CPU在等待下一个输入字节时进入休眠状态。 (如果你实际上对任何事情使用非阻塞,那么忙碌的等待会更有意义,但你不是。如果你想限制服务器阻止输入的时间,那么总是settimeout()
。但是不要盲目地使用那个,因为只需切换到阻止recv()
,这段代码就会受益最多。)
不向客户发送数据
if Servdata == '~':
motor.write(Servdata)
retval = motor.readline()
Serv.send(retval)
我认为这段代码还没有被执行:) Serv
没有连接任何东西,它是一个监听套接字。你可能在这里意味着connection.send(retval)
;我在服务器中找不到任何实际将数据发送到客户端的其他行,所以可能这应该是它。
一下子
客户端中的这段代码有点脆弱,但可能永远不会破坏:
def on_GetPing_mouseClick(self, event):
Client.send('~')
retval = Client.recv()
ping_data = retval.strip() # strip out the newline, if you read an entire line
split_data = ping_data.split(',')
L_Ping = split_data[0]
R_Ping = split_data[1]
self.components.PingLeft.text = str(L_Ping)
self.components.PingRight.text = str(R_Ping)
此代码假定recv()
调用将返回一个协议消息。 TCP流不能以这种方式工作,对等端可以随意发送任何大小的传出数据。 (TCP / IP始终堆叠combine multiple application-level messages into a single TCP packet。它们还发送小于的数据包,以避免fragmentation。)
使用从远程对等方接收的内容填充队列然后解析队列中的命令/消息会更安全。您可能在队列中找到十个命令,您可能只找到命令的 part - 但您的代码需要准备好在队列中推送部分消息,并从队列中消耗完整的消息当它们可用时。
这是一项额外的工作,但需要在不太理想的情况下安全操作。您可能永远不会遇到局域网上的问题,但在无线网络或通过大型网络路由时会遇到问题。