如何将一组重叠范围划分为非重叠范围?

时间:2009-03-10 03:21:08

标签: python algorithm math range rectangles

假设您有一组范围:

  • 0 - 100:'a'
  • 0 - 75:'b'
  • 95 - 150:'c'
  • 120 - 130:'d'

显然,这些范围在某些点重叠。您如何剖析这些范围以生成非重叠范围列表,同时保留与其原始范围相关的信息(在这种情况下,范围后面的字母)?

例如,运行算法后的上述结果将是:

  • 0 - 75:'a','b'
  • 76 - 94:'a'
  • 95 - 100:'a','c'
  • 101 - 119:'c'
  • 120 - 130:'c','d'
  • 131 - 150:'c'

5 个答案:

答案 0 :(得分:11)

在编写混合(部分重叠)音频样本的程序时,我遇到了同样的问题。

我所做的是将“开始事件”和“停止事件”(对于每个项目)添加到列表中,按时间点对列表进行排序,然后按顺序处理它。您可以这样做,除了使用整数点而不是时间,而不是混合声音,您将添加符号到对应于范围的集合。无论您是生成空范围还是省略它们都是可选的。

Edit也许有些代码......

# input = list of (start, stop, symbol) tuples
points = [] # list of (offset, plus/minus, symbol) tuples
for start,stop,symbol in input:
    points.append((start,'+',symbol))
    points.append((stop,'-',symbol))
points.sort()

ranges = [] # output list of (start, stop, symbol_set) tuples
current_set = set()
last_start = None
for offset,pm,symbol in points:
    if pm == '+':
         if last_start is not None:
             #TODO avoid outputting empty or trivial ranges
             ranges.append((last_start,offset-1,current_set))
         current_set.add(symbol)
         last_start = offset
    elif pm == '-':
         # Getting a minus without a last_start is unpossible here, so not handled
         ranges.append((last_start,offset-1,current_set))
         current_set.remove(symbol)
         last_start = offset

# Finish off
if last_start is not None:
    ranges.append((last_start,offset-1,current_set))

显然没有经过考验。

答案 1 :(得分:1)

我想创建一个端点列表并对其进行排序,并通过起点和终点索引范围列表。然后遍历已排序的端点列表,并为每个端点检查范围,以查看在该点开始/停止的端点。

这可能在代码中更好地表示...如果您的范围由元组表示:

ranges = [(0,100,'a'),(0,75,'b'),(95,150,'c'),(120,130,'d')]
endpoints = sorted(list(set([r[0] for r in ranges] + [r[1] for r in ranges])))
start = {}
end = {}
for e in endpoints:
    start[e] = set()
    end[e] = set()
for r in ranges:
    start[r[0]].add(r[2])
    end[r[1]].add(r[2])
current_ranges = set()
for e1, e2 in zip(endpoints[:-1], endpoints[1:]):
    current_ranges.difference_update(end[e1])
    current_ranges.update(start[e1])
    print '%d - %d: %s' % (e1, e2, ','.join(current_ranges))

虽然回想起来看这个,但如果没有更高效(或至少看起来更干净)的方式,我会感到惊讶。

答案 2 :(得分:1)

你所描述的是集合论的一个例子。有关计算联合,交集和集合差异的通用算法,请参阅:

www.gvu.gatech.edu/~jarek/graphics/papers/04PolygonBooleansMargalit.pdf

虽然本文的目标是图形,但它也适用于一般集理论。不完全是轻读物。

答案 3 :(得分:0)

伪代码:

unusedRanges = [ (each of your ranges) ]
rangesInUse = []
usedRanges = []
beginningBoundary = nil

boundaries = [ list of all your ranges' start and end values, sorted ]
resultRanges = []

for (boundary in boundaries) {
    rangesStarting = []
    rangesEnding = []

    // determine which ranges begin at this boundary
    for (range in unusedRanges) {
        if (range.begin == boundary) {
            rangesStarting.add(range)
        }
    }

    // if there are any new ones, start a new range
    if (rangesStarting isn't empty) {
        if (beginningBoundary isn't nil) {
            // add the range we just passed
            resultRanges.add(beginningBoundary, boundary - 1, [collected values from rangesInUse])
        }

        // note that we are starting a new range
        beginningBoundary = boundary

        for (range in rangesStarting) {
            rangesInUse.add(range)
            unusedRanges.remove(range)
        }
    }

    // determine which ranges end at this boundary
    for (range in rangesInUse) {
        if (range.end == boundary) {
            rangesEnding.add(range)
        }
    }

    // if any boundaries are ending, stop the range
    if (rangesEnding isn't empty) {
        // add the range up to this boundary
        resultRanges.add(beginningBoundary, boundary, [collected values from rangesInUse]

        for (range in rangesEnding) {
            usedRanges.add(range)
            rangesInUse.remove(range)
        }

        if (rangesInUse isn't empty) {
            // some ranges didn't end; note that we are starting a new range
            beginningBoundary = boundary + 1
        }
        else {
            beginningBoundary = nil
        }
    }
}

单元测试:

最后,resultRanges应该有你要查找的结果,unusedRanges和rangesInUse应该是空的,beginningBoundary应该是nil,而usedRanges应该包含usesRanges曾经包含的内容(但是按range.end排序)。

答案 4 :(得分:0)

与埃德蒙兹类似的答案,经过测试,包括对(1,1)之类的区间的支持:

class MultiSet(object):
    def __init__(self, intervals):
        self.intervals = intervals
        self.events = None

    def split_ranges(self):
        self.events = []
        for start, stop, symbol in self.intervals:
            self.events.append((start, True, stop, symbol))
            self.events.append((stop, False, start, symbol))

        def event_key(event):
            key_endpoint, key_is_start, key_other, _ = event
            key_order = 0 if key_is_start else 1
            return key_endpoint, key_order, key_other

        self.events.sort(key=event_key)

        current_set = set()
        ranges = []
        current_start = -1

        for endpoint, is_start, other, symbol in self.events:
            if is_start:
                if current_start != -1 and endpoint != current_start and \
                       endpoint - 1 >= current_start and current_set:
                    ranges.append((current_start, endpoint - 1, current_set.copy()))
                current_start = endpoint
                current_set.add(symbol)
            else:
                if current_start != -1 and endpoint >= current_start and current_set:
                    ranges.append((current_start, endpoint, current_set.copy()))
                current_set.remove(symbol)
                current_start = endpoint + 1

        return ranges


if __name__ == '__main__':
    intervals = [
        (0, 100, 'a'), (0, 75, 'b'), (75, 80, 'd'), (95, 150, 'c'), 
        (120, 130, 'd'), (160, 175, 'e'), (165, 180, 'a')
    ]
    multiset = MultiSet(intervals)
    pprint.pprint(multiset.split_ranges())


[(0, 74, {'b', 'a'}),
 (75, 75, {'d', 'b', 'a'}),
 (76, 80, {'d', 'a'}),
 (81, 94, {'a'}),
 (95, 100, {'c', 'a'}),
 (101, 119, {'c'}),
 (120, 130, {'d', 'c'}),
 (131, 150, {'c'}),
 (160, 164, {'e'}),
 (165, 175, {'e', 'a'}),
 (176, 180, {'a'})]