假设我们有两个数据集:
测定:
BHID<-c(127,127,127,127,128)
FROM<-c(950,959,960,961,955)
TO<-c(958,960,961,966,969)
Cu<-c(0.3,0.9,2.5,1.2,0.5)
assays<-data.frame(BHID,FROM,TO,Cu)
和平版:
BHID<-c(125,127,127,127)
FROM<-c(940,949,960,962)
TO<-c(949,960,961,969)
ROCK<-c(1,1,2,3)
litho<-data.frame(BHID,FROM,TO,ROCK)
我希望加入这两组,运行算法后的结果是:
BHID FROM TO CU ROCK
125 940 970 - 1
127 949 950 - 1
127 950 958 0.3 1
127 958 959 - 1
127 959 960 0.9 1
127 960 961 2.5 2
127 961 962 1.2 -
127 962 966 1.2 3
127 966 969 - 3
128 955 962 0.5 -
答案 0 :(得分:3)
使用merge
merge(assays, litho, all=T)
实质上,all=T
是SQL
的{{1}}等价物。我没有指定任何列,因为在这种情况下FULL OUTER JOIN
函数将在具有相同名称的列中执行连接。
答案 1 :(得分:0)
很难,但代码似乎有效。我们的想法是首先将每一行扩展为多行,每行代表从FROM
到TO
的一个增量。合并后,识别连续的行并取消展开它们......显然,这不是一种非常有效的方法,因此如果您的实际数据具有非常大的FROM
和TO
范围,它可能会也可能不会起作用。 / p>
library(plyr)
ASSAYS <- adply(assays, 1, with, {
SEQ <- seq(FROM, TO)
data.frame(BHID,
FROM = head(seq(FROM, TO), -1),
TO = tail(seq(FROM, TO), -1),
Cu)
})
LITHO <- adply(litho, 1, with, {
SEQ <- seq(FROM, TO)
data.frame(BHID,
FROM = head(seq(FROM, TO), -1),
TO = tail(seq(FROM, TO), -1),
ROCK)
})
not.as.previous <- function(x) {
x1 <- head(x, -1)
x2 <- tail(x, -1)
c(TRUE, !is.na(x1) & !is.na(x2) & x1 != x2 |
is.na(x1) & !is.na(x2) |
!is.na(x1) & is.na(x2))
}
MERGED <- merge(ASSAYS, LITHO, all = TRUE)
MERGED <- transform(MERGED,
gp.id = cumsum(not.as.previous(BHID) |
not.as.previous(Cu) |
not.as.previous(ROCK)))
merged <- ddply(MERGED, "gp.id", function(x) {
out <- head(x, 1)
out$TO <- tail(x$TO, 1)
out
})
merged
# BHID FROM TO Cu ROCK gp.id
# 1 125 940 949 NA 1 1
# 2 127 949 950 NA 1 2
# 3 127 950 958 0.3 1 3
# 4 127 958 959 NA 1 4
# 5 127 959 960 0.9 1 5
# 6 127 960 961 2.5 2 6
# 7 127 961 962 1.2 NA 7
# 8 127 962 966 1.2 3 8
# 9 127 966 969 NA 3 9
# 10 128 955 969 0.5 NA 10
请注意,第一行与预期输出不完全相同,但我认为我的更有意义。