我很有趣的tensorflow 2.2,并且正在重新训练mobilenets体系结构。总的来说,我的训练很好,但是在尝试将模型转换为tensorflow lite时抛出了错误 在此处输入代码 将tensorflow作为tf导入 进口PIL 从tensorflow.lite.python导入lite 从tensorflow.python.keras.layers.core导入密集 从tensorflow.keras.optimizers导入Adam 从tensorflow.python.keras.metrics导入categorical_crossentropy 从tensorflow.keras.preprocessing.image导入ImageDataGenerator 从tensorflow.python.keras.preprocessing导入图像 从tensorflow.keras.models导入模型 从tensorflow.python.keras.applications导入imagenet_utils 从sklearn.metrics导入confusion_matrix 导入路径库 从mlxtend.plotting导入plot_confusion_matrix 将seaborn导入为sns 将numpy导入为np
train_path = "C:/Users/rosha/PycharmProjects/FYP/Cat-Man-Car/train"
validation_path = "C:/Users/rosha/PycharmProjects/FYP/Cat-Man-Car/validation"
test_path = "C:/Users/rosha/PycharmProjects/FYP/Cat-Man-Car/test"
train_batch = ImageDataGenerator(preprocessing_function=tf.keras.applications.mobilenet.preprocess_input).flow_from_directory(
train_path, target_size=(224,224), batch_size=64)
valid_batch = ImageDataGenerator(preprocessing_function=tf.keras.applications.mobilenet.preprocess_input).flow_from_directory(
validation_path, target_size=(224,224), batch_size=64)
test_batch = ImageDataGenerator(preprocessing_function=tf.keras.applications.mobilenet.preprocess_input).flow_from_directory(
test_path, target_size=(224,224), batch_size=64, shuffle=False)
model= tf.keras.applications.mobilenet.MobileNet() #call mobilenet API AND STORE INTO MOBILE variable
model.summary()
x = model.layers[-1].output
predictions = Dense(3, activation='softmax')(x)
model = Model(inputs=model.input, outputs=predictions)
def plot_confusion_matrix(cm,
target_names,
title='Confusion matrix',
cmap=None,
normalize=True):
"""
given a sklearn confusion matrix (cm), make a nice plot
Arguments
---------
cm: confusion matrix from sklearn.metrics.confusion_matrix
target_names: given classification classes such as [0, 1, 2]
the class names, for example: ['high', 'medium', 'low']
title: the text to display at the top of the matrix
cmap: the gradient of the values displayed from matplotlib.pyplot.cm
see http://matplotlib.org/examples/color/colormaps_reference.html
plt.get_cmap('jet') or plt.cm.Blues
normalize: If False, plot the raw numbers
If True, plot the proportions
Usage
-----
plot_confusion_matrix(cm = cm, # confusion matrix created by
# sklearn.metrics.confusion_matrix
normalize = True, # show proportions
target_names = y_labels_vals, # list of names of the classes
title = best_estimator_name) # title of graph
Citiation
---------
http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
"""
import matplotlib.pyplot as plt
import numpy as np
import itertools
accuracy = np.trace(cm) / np.sum(cm).astype('float')
misclass = 1 - accuracy
if cmap is None:
cmap = plt.get_cmap('Blues')
plt.figure(figsize=(8, 6))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
if target_names is not None:
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 1.5 if normalize else cm.max() / 2
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
if normalize:
plt.text(j, i, "{:0.4f}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
else:
plt.text(j, i, "{:,}".format(cm[i, j]),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass))
plt.show()
model.compile(Adam(lr=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])
trained_model = model.fit_generator(train_batch, validation_data=test_batch, epochs=1)
export_dir = 'saved/model/1'
tf.saved_model.save(trained_model,export_dir)
converter = tf.lite.TFLiteConverter.from_saved_model(export_dir)
tflite_model = converter.convert()
tflite_model_file = pathlib.Path('/content/model.tflite')
tflite_model_file.write_bytes(tflite_model)
test_labels = test_batch.classes # this line shows classes and store into test_labels
print(test_labels) # shows classes
print(test_batch.class_indices) # show class indices like 0 for car 1 for cat 2 for man
predictions = model.predict_generator(test_batch)
cm = confusion_matrix(test_labels, predictions.argmax(axis=1))
print(f'model input : {model.input}, model input_names : {model.input_names} ')
print(f'model output : {model.output}, model output_names : {model.output_names} ')
cm_plot_labels = ['car', 'cat', 'man']
plot_confusion_matrix(cm, cm_plot_labels, normalize=False)
import matplotlib.pyplot as plt
# plot training & validation accuracy values
plt.plot(trained_model.history['accuracy'])
plt.plot(trained_model.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train','Test'], loc='upper left')
plt.show()
# plot training & validation loss
plt.plot(trained_model.history['loss'])
plt.plot(trained_model.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train','Test'], loc='upper left')
plt.show()