熊猫数据框多索引索引

时间:2020-07-01 21:23:19

标签: python pandas multi-index

我有一个这样的数据框:

           d
a  b  c     
a1 b1 c1  10
   b2 c2  11
a2 b3 c3  12
   b4 c4   1
a3 b5 c5   2

abcmulti_index列,我试图根据一个或多个索引列的值引用一些行。如何使用这些索引列的某种组合来过滤行?我尝试使用.loc,但没有得到想要的结果:

理想的方案是传递一个包含我想要的索引值的列表,以便我可以动态地传递我想要的参数。但是在下面的示例中,它不起作用。

>>> x.loc[['a1', 'b1', 'c1']]
           d
a  b  c     
a1 b1 c1  10
   b2 c2  11

我看到这可行:

>>> x.loc['a1', 'b1', 'c1']
d    10

但是x.loc['a1', 'c1']返回错误。

毕竟,.loc在处理multi-index值时如何工作?我没有找到其他问题来回答这个问题(也许是因为我使用了错误的关键字,我不知道...)。

我的最终目标是使用多索引列的值(有时不是所有列)并获取对应的行。

1 个答案:

答案 0 :(得分:0)

根据您使用的 Pandas 版本,也可能会有不同的结果。 查看您的示例,由于您的数据框只有一列,请注意不要在某些时候将其转换为系列。

# Code to illustrate pandas upgrade:
import pandas as pd
cats = ['A', 'B']
groups = ['x','y','z']
idx = pd.MultiIndex.from_product((cats,groups))
df = pd.DataFrame(data=range(6), index=idx)  # Dataframe
ser = pd.Series(data=range(6), index=idx)  # Series

df.loc[pd.IndexSlice['A','y':],:] # This works for both pandas
ser.loc[pd.IndexSlice['A','y':],:] # This only works in older pandas
ser.loc[pd.IndexSlice['A','y':]] # This works in new pandas and old pandas`

pandas 1.2.x 抛出的错误是:

TypeError: unhashable type: 'slice'