我想问一个有关在熊猫中合并多索引数据框的问题,这是一个假设的场景:
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
tuples = list(zip(*arrays))
index1 = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
index2 = pd.MultiIndex.from_tuples(tuples, names=['third', 'fourth'])
s1 = pd.DataFrame(np.random.randn(8), index=index1, columns=['s1'])
s2 = pd.DataFrame(np.random.randn(8), index=index2, columns=['s2'])
然后
s1.merge(s2, how='left', left_index=True, right_index=True)
或
s1.merge(s2, how='left', left_on=['first', 'second'], right_on=['third', 'fourth'])
将导致错误。
我是否必须在任一s1 / s2上执行reset_index()才能使它工作?
谢谢
答案 0 :(得分:7)
似乎您需要结合使用它们。
s1.merge(s2, left_index=True, right_on=['third', 'fourth'])
#s1.merge(s2, right_index=True, left_on=['first', 'second'])
s1 s2
bar one 0.765385 -0.365508
two 1.462860 0.751862
baz one 0.304163 0.761663
two -0.816658 -1.810634
foo one 1.891434 1.450081
two 0.571294 1.116862
qux one 1.056516 -0.052927
two -0.574916 -1.197596
答案 1 :(得分:6)
除了使用@ALollz所指向的索引名称外,您可以简单地使用loc
,它将自动匹配索引
s1.loc[:, 's2'] = s2 # Or explicitly, s2['s2']
s1 s2
first second
bar one -0.111384 -2.341803
two -1.226569 1.308240
baz one 1.880835 0.697946
two -0.008979 -0.247896
foo one 0.103864 -1.039990
two 0.836931 0.000811
qux one -0.859005 -1.199615
two -0.321341 -1.098691
一个通用公式就是
s1.loc[:, s2.columns] = s2
答案 2 :(得分:4)
rename_axis
您可以重命名一个的索引级别,并让join
来完成它的工作
s1.join(s2.rename_axis(s1.index.names))
s1 s2
first second
bar one -0.696420 -1.040463
two 0.640891 1.483262
baz one 1.598837 0.097424
two 0.003994 -0.948419
foo one -0.717401 1.190019
two -1.201237 -0.000738
qux one 0.559684 -0.505640
two 1.979700 0.186013
concat
pd.concat([s1, s2], axis=1)
s1 s2
first second
bar one -0.696420 -1.040463
two 0.640891 1.483262
baz one 1.598837 0.097424
two 0.003994 -0.948419
foo one -0.717401 1.190019
two -1.201237 -0.000738
qux one 0.559684 -0.505640
two 1.979700 0.186013
答案 3 :(得分:4)
通过combine_first
分配
s1.combine_first(s2)
Out[19]:
s1 s2
first second
bar one 0.039203 0.795963
two 0.454782 -0.222806
baz one 3.101120 -0.645474
two -1.174929 -0.875561
foo one -0.887226 1.078218
two 1.507546 -1.078564
qux one 0.028048 0.042462
two 0.826544 -0.375351
# s2.combine_first(s1)