我在Google Colab上用完了25GB RAM

时间:2020-06-30 21:21:19

标签: tensorflow machine-learning deep-learning google-colaboratory

下面是我的代码,我正在使用8000张X射线图像制作多标签分类模型,有人可以在这里帮助我吗?这是我在加载图像本身时使用的大多数ram下面的代码,并且只能运行10个历元。 有人可以告诉我我需要对此代码进行哪些更改才能运行并生成模型。

from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications import VGG16
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras.layers import *
from tensorflow.keras.layers import AveragePooling2D
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import to_categorical
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from imutils import paths
import matplotlib.pyplot as plt
import numpy as np
import argparse
import cv2
import os

# construct the argument parser and parse the arguments

# initialize the initial learning rate, number of epochs to train for,
# and batch size
INIT_LR = 1e-3
EPOCHS = 40
BS = 66

# grab the list of images in our dataset directory, then initialize
# the list of data (i.e., images) and class images
print("[INFO] loading images...")
imagePaths = list(paths.list_images('/content/drive/My Drive/testset/'))
data = []
labels = []

# loop over the image paths
for imagePath in imagePaths:
    # extract the class label from the filename
    label = imagePath.split(os.path.sep)[-2]

    # load the image, swap color channels, and resize it to be a fixed
    # 224x224 pixels while ignoring aspect ratio
    image = cv2.imread(imagePath)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image = cv2.resize(image, (224, 224))

    # update the data and labels lists, respectively
    data.append(image)
    labels.append(label)

# convert the data and labels to NumPy arrays while scaling the pixel
# intensities to the range [0, 255]
data = np.array(data) / 255.0
labels = np.array(labels)

# perform one-hot encoding on the labels
lb = LabelBinarizer()
labels = lb.fit_transform(labels)

# partition the data into training and testing splits using 80% of
# the data for training and the remaining 20% for testing
(trainX, testX, trainY, testY) = train_test_split(data, labels,
    test_size=0.20, stratify=labels, random_state=42)

# initialize the training data augmentation object
trainAug = ImageDataGenerator(
    rotation_range=15,
    fill_mode="nearest")

# load the VGG16 network, ensuring the head FC layer sets are left
# off
baseModel = VGG16(weights="imagenet", include_top=False,
    input_tensor=Input(shape=(224, 224, 3)))

# construct the head of the model that will be placed on top of the
# the base model
headModel = baseModel.output
headModel = AveragePooling2D(pool_size=(4, 4))(headModel)
headModel = Flatten(name="flatten")(headModel)
headModel = Dense(64, activation="relu")(headModel)
headModel = Dropout(0.5)(headModel)
headModel = Dense(3, activation="softmax")(headModel)

# place the head FC model on top of the base model (this will become
# the actual model we will train)
model = Model(inputs=baseModel.input, outputs=headModel)

# loop over all layers in the base model and freeze them so they will
# *not* be updated during the first training process
for layer in baseModel.layers:
    layer.trainable = False

# compile our model
print("[INFO] compiling model...")
opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS)
model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"])

# train the head of the network
print("[INFO] training head...")
H = model.fit(
    trainAug.flow(trainX, trainY, batch_size=BS),
    steps_per_epoch=len(trainX) // BS,
    validation_data=(testX, testY),
    validation_steps=len(testX) // BS,
    epochs=EPOCHS)

# make predictions on the testing set
print("[INFO] evaluating network...")
predIdxs = model.predict(testX, batch_size=BS)

# for each image in the testing set we need to find the index of the
# label with corresponding largest predicted probability
predIdxs = np.argmax(predIdxs, axis=1)

# show a nicely formatted classification report
print(classification_report(testY.argmax(axis=1), predIdxs,
    target_names=lb.classes_))

# compute the confusion matrix and and use it to derive the raw
# accuracy, sensitivity, and specificity
cm = confusion_matrix(testY.argmax(axis=1), predIdxs)
total = sum(sum(cm))
acc = (cm[0, 0] + cm[1, 1]) / total
sensitivity = cm[0, 0] / (cm[0, 0] + cm[0, 1])
specificity = cm[1, 1] / (cm[1, 0] + cm[1, 1])

# show the confusion matrix, accuracy, sensitivity, and specificity
print(cm)
print("acc: {:.4f}".format(acc))
print("sensitivity: {:.4f}".format(sensitivity))
print("specificity: {:.4f}".format(specificity))

# plot the training loss and accuracy
N = EPOCHS
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, N), H.history["accuracy"], label="train_acc",color='green')
plt.plot(np.arange(0, N), H.history["val_accuracy"], label="val_acc")
plt.title("Training Loss and Accuracy on COVID-19 Dataset")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc="lower left")
plt.savefig('/content/drive/My Drive/setcovid/plot2.png')

# serialize the model to disk
print("[INFO] saving COVID-19 detector model...")
model.save('/content/drive/My Drive/setcovid/model2',save_format="h5" )

1 个答案:

答案 0 :(得分:0)

您可以尝试根据此数据生成 TFRecords ,将它们存储到驱动器中,然后通过批量将它们馈入模型,而不是直接将其加载到内存中。我会推荐 Hvass Laboratories YouTube频道,tensorflow教程播放列表,教程编号18, TFRecords和Dataset API 以及Dataset API tensorflow的官方文档。