我是PyTorch的新手,最近,我一直在尝试与《变形金刚》合作。我正在使用HuggingFace提供的预训练标记器。
我成功下载并运行了它们。但是,如果我尝试保存它们并再次加载,则会发生一些错误。
如果我使用AutoTokenizer.from_pretrained
下载令牌生成器,那么它将起作用。
[1]: tokenizer = AutoTokenizer.from_pretrained('distilroberta-base')
text = "Hello there"
enc = tokenizer.encode_plus(text)
enc.keys()
Out[1]: dict_keys(['input_ids', 'attention_mask'])
但是,如果我使用tokenizer.save_pretrained("distilroberta-tokenizer")
保存它并尝试在本地加载它,那么它将失败。
[2]: tmp = AutoTokenizer.from_pretrained('distilroberta-tokenizer')
---------------------------------------------------------------------------
OSError Traceback (most recent call last)
/opt/conda/lib/python3.7/site-packages/transformers/configuration_utils.py in get_config_dict(cls, pretrained_model_name_or_path, **kwargs)
238 resume_download=resume_download,
--> 239 local_files_only=local_files_only,
240 )
/opt/conda/lib/python3.7/site-packages/transformers/file_utils.py in cached_path(url_or_filename, cache_dir, force_download, proxies, resume_download, user_agent, extract_compressed_file, force_extract, local_files_only)
266 # File, but it doesn't exist.
--> 267 raise EnvironmentError("file {} not found".format(url_or_filename))
268 else:
OSError: file distilroberta-tokenizer/config.json not found
During handling of the above exception, another exception occurred:
OSError Traceback (most recent call last)
<ipython-input-25-3bd2f7a79271> in <module>
----> 1 tmp = AutoTokenizer.from_pretrained("distilroberta-tokenizer")
/opt/conda/lib/python3.7/site-packages/transformers/tokenization_auto.py in from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
193 config = kwargs.pop("config", None)
194 if not isinstance(config, PretrainedConfig):
--> 195 config = AutoConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
196
197 if "bert-base-japanese" in pretrained_model_name_or_path:
/opt/conda/lib/python3.7/site-packages/transformers/configuration_auto.py in from_pretrained(cls, pretrained_model_name_or_path, **kwargs)
194
195 """
--> 196 config_dict, _ = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
197
198 if "model_type" in config_dict:
/opt/conda/lib/python3.7/site-packages/transformers/configuration_utils.py in get_config_dict(cls, pretrained_model_name_or_path, **kwargs)
250 f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {CONFIG_NAME} file\n\n"
251 )
--> 252 raise EnvironmentError(msg)
253
254 except json.JSONDecodeError:
OSError: Can't load config for 'distilroberta-tokenizer'. Make sure that:
- 'distilroberta-tokenizer' is a correct model identifier listed on 'https://huggingface.co/models'
- or 'distilroberta-tokenizer' is the correct path to a directory containing a config.json file
说目录中缺少'config.josn'。在检查目录时,我正在获取这些文件的列表:
[3]: !ls distilroberta-tokenizer
Out[3]: merges.txt special_tokens_map.json tokenizer_config.json vocab.json
我知道此问题已在较早之前发布,但是它们似乎都没有起作用。我也尝试遵循docs,但仍然无法使其正常工作。
任何帮助将不胜感激。
答案 0 :(得分:1)
我在下面列出的代码中看到了几个问题:
distilroberta-tokenizer是一个包含vocab配置等文件的目录。请确保首先创建此目录。
如果此目录包含config.json而不是NOT tokenizer_config.json,则使用AutoTokenizer起作用。因此,请重命名该文件。
我在下面修改了您的代码,它可以正常工作。
dir_name = "distilroberta-tokenizer"
if os.path.isdir(dir_name) == False:
os.mkdir(dir_name)
tokenizer.save_pretrained(dir_name)
#Rename config file now
#tmp = AutoTokenizer.from_pretrained(dir_name)
我希望这会有所帮助!
谢谢!
答案 1 :(得分:1)
目前有一个issue正在调查中,该问题仅影响自动令牌生成器,而不影响诸如(RobertaTokenizer)之类的基础令牌生成器。例如,以下方法应该起作用:
from transformers import RobertaTokenizer
tokenizer = RobertaTokenizer.from_pretrained('YOURPATH')
要使用自动令牌生成器,您还需要保存配置以离线加载它:
from transformers import AutoTokenizer, AutoConfig
tokenizer = AutoTokenizer.from_pretrained('distilroberta-base')
config = AutoConfig.from_pretrained('distilroberta-base')
tokenizer.save_pretrained('YOURPATH')
config.save_pretrained('YOURPATH')
tokenizer = AutoTokenizer.from_pretrained('YOURPATH')
我建议 为令牌生成器和模型使用不同的路径,或者保留模型的config.json,因为对模型进行的一些修改会会存储在model.save_pretrained()
期间创建的config.json中,并且在模型保存后如上述保存令牌生成器时将被覆盖(即,您将无法使用令牌生成器config.json加载修改后的模型)