如何在准确性/损失计算期间更新索引?

时间:2020-06-18 12:23:49

标签: tensorflow lstm recurrent-neural-network

TensorFlow和RNN模型的新手。

我正在基于对一系列ImdB评论的情绪分析来测试RNN(LSTM)模型。

代码一直有效,直到计算出准确度和损失的数据为止:

RuntimeError:索引超出范围

代码如下:

import numpy as np
from collections import Counter
from string import punctuation
from sklearn.model_selection import train_test_split
import torch.nn as nn

#read text from .txt files
with open('reviews.txt', 'r') as f:
    reviews = f.read()
with open('labels.txt', 'r') as f:
    labels = f.read()

# REMOVE PUNCTUATION
from string import punctuation

reviews = reviews.lower()
all_text = ''.join([c for c in reviews if c not in punctuation])

# SPLIT BY NEW LINES AND SPACES
reviews_split = all_text.split('\n')
all_text = ' '.join(reviews_split)

#CREATE A LIST OF WORDS
words= all_text.split()

counts = Counter(words)
vocab = sorted(counts, key=counts.get, reverse=True)
vocab_to_int = {word: ii for ii, word in enumerate(vocab, 1)}

# USE THE NEW DICTIONARY TO TOKENIZE EACH REVIEW  IN reviews_split
# STORE THE 'TOKENIZED' REVIEWS IN reviews_int

reviews_int =[]
for review in reviews_split:
    reviews_int.append([vocab_to_int[word] for word in review.split()])

# stats about vocabulary
vocab_size = len(vocab_to_int)

#  1 = positive, 0 = negative {label conversion}
labels_split = labels.split('\n')
encoded_labels = np.array([1 if label == 'positive' else 0 for label in labels_split])

# OUTLIER REVIEW STATS
review_lens = Counter([len(x) for x in reviews_int])

## remove any reviews/labels with zero length from the reviews_int list.
# get indices of any reviews with length 0 

non_zero_idx = [ii for ii, review in enumerate(reviews_int) if len(review) != 0]

# remove 0-length reviews and their labels 
reviews_int = [reviews_int[ii] for ii in non_zero_idx] 
encoded_labels = np.array([encoded_labels[ii] for ii in non_zero_idx])

def pad_features(reviews_ints, seq_length):
    ''' Return features of review_ints, where each review is padded with 0's
    or truncated to the input seq_length.'''

    # getting the correct rows x cols shape
    features = np.zeros((len(reviews_ints), seq_length), dtype=int)

    # for each review, I grab that review and
    for i, row in enumerate(reviews_ints):
        features[i, -len(row):] = np.array(row)[:seq_length]

    return features

# Test your implementation!
seq_length = 200

features = pad_features(reviews_int, seq_length=seq_length)

## test statements - do not change - ##
assert len(features)==len(reviews_int), "Your features should have as many rows as reviews."
assert len(features[0])==seq_length, "Each feature row should contain seq_length values." 

# Split train/test/dev
X_train, X_remainder, Y_train, Y_remainder = train_test_split(features, encoded_labels, test_size=0.2, random_state=7)
X_test, X_valid, Y_test, Y_valid = train_test_split(X_remainder, Y_remainder, test_size=0.5, random_state=7)

from torch.utils.data import TensorDataset, DataLoader
import torch

#CREATE TENSOR DATASETS
train_data = TensorDataset(torch.from_numpy(X_train), torch.from_numpy(Y_train))
valid_data = TensorDataset(torch.from_numpy(X_valid), torch.from_numpy(Y_valid))
test_data = TensorDataset(torch.from_numpy(X_test), torch.from_numpy(Y_test))

# DATALOADERS
batch_size = 50

# SHUFFLE DATA
train_loader = DataLoader(train_data, shuffle=True,batch_size=batch_size)
valid_loader = DataLoader(valid_data, shuffle=True,batch_size=batch_size)
test_loader = DataLoader(test_data, shuffle=True,batch_size=batch_size)

# OBTAIN BATCH OF TRAINING DATA
detailer = iter(train_loader)
sample_x, sample_y = detailer.next()

#RNN MODEL

class SentimentRNN(nn.Module):
"""
The RNN model that will be used to perform Sentiment analysis.
"""

def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, drop_prob=0.5):
    """
    Initialize the model by setting up the layers.
    """

    super(SentimentRNN, self).__init__()

    self.output_size = output_size
    self.n_layers = n_layers
    self.hidden_dim = hidden_dim

    # embedding and LSTM layers
    self.embedding = nn.Embedding(vocab_size, embedding_dim)
    self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers, dropout=drop_prob, batch_first=True)

    # dropout layer
    self.dropout = nn.Dropout(0.3)

    # linear and sigmoid layers
    self.fc = nn.Linear(hidden_dim, output_size)
    self.sig = nn.Sigmoid()

def forward(self, x, hidden):
    """
    Perform a forward pass of our model on some input and hidden state.
    """

    batch_size = x.size(0)

    # embeddings and lstm_out
    x = x.long()
    embeds = self.embedding(x)
    lstm_out, hidden = self.lstm(embeds, hidden)

    # stack up lstm outputs
    lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim)

    # dropout and fully-connected layer
    out = self.dropout(lstm_out)
    out = self.fc(out)
    # sigmoid function
    sig_out = self.sig(out)

    # reshape to be batch_size first
    sig_out = sig_out.view(batch_size, -1)
    sig_out = sig_out[:, -1] # get last batch of labels

    # return last sigmoid output and hidden state
    return sig_out, hidden

def init_hidden(self, batch_size):

    ''' Initializes hidden state '''
    # Create two new tensors with sizes n_layers x batch_size x hidden_dim,
    # initialized to zero, for hidden state and cell state of LSTM
    weight = next(self.parameters()).data

    if (train_on_gpu):
        hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda(),
              weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().cuda())
    else:
        hidden = (weight.new(self.n_layers, batch_size, self.hidden_dim).zero_(),
                  weight.new(self.n_layers, batch_size, self.hidden_dim).zero_())

    return hidden

net = SentimentRNN(vocab_size, 2, 200, 256, 3)

# loss and optimization functions
lr=0.001

criterion = nn.BCELoss()
optimizer = torch.optim.Adam(net.parameters(), lr=lr)

# training params

epochs = 4 # 3-4 is approx where I noticed the validation loss stop decreasing

counter = 0
print_every = 100
clip=5 # gradient clipping

# move model to GPU, if available
if(train_on_gpu):
    net.cuda()

net.train()
# train for some number of epochs
for e in range(epochs):
# initialize hidden state
h = net.init_hidden(batch_size)

# batch loop
for inputs, labels in train_loader:
    counter += 1

    if(train_on_gpu):
        inputs, labels = inputs.cuda(), labels.cuda()

    # Creating new variables for the hidden state, otherwise
    # we'd backprop through the entire training history
    h = tuple([each.data for each in h])

    # zero accumulated gradients
    net.zero_grad()

    # get the output from the model
    output, h = net(inputs, h)

    # calculate the loss and perform backprop
    loss = criterion(output.squeeze(), labels.float())
    loss.backward()
    # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
    nn.utils.clip_grad_norm_(net.parameters(), clip)
    optimizer.step()

    # loss stats
    if counter % print_every == 0:
        # Get validation loss
        val_h = net.init_hidden(batch_size)
        val_losses = []
        net.eval()
        for inputs, labels in valid_loader:

            # Creating new variables for the hidden state, otherwise
            # we'd backprop through the entire training history
            val_h = tuple([each.data for each in val_h])

            if(train_on_gpu):
                inputs, labels = inputs.cuda(), labels.cuda()

            output, val_h = net(inputs, val_h)
            val_loss = criterion(output.squeeze(), labels.float())

            val_losses.append(val_loss.item())

        net.train()
        print("Epoch: {}/{}...".format(e+1, epochs),
              "Step: {}...".format(counter),
              "Loss: {:.6f}...".format(loss.item()),
              "Val Loss: {:.6f}".format(np.mean(val_losses)))

喜欢在这里加油: enter image description here

运行以下代码以测试数据准确性和丢失以及预期输出:

“测试损失:0.537 .... 测试精度:0.811 ...“

获取:

RuntimeError:索引超出范围:试图从表中访问索引74072,其中包含74071行

# Get test data loss and accuracy

test_losses = [] # track loss
num_correct = 0

# init hidden state
h = net.init_hidden(batch_size)

net.eval()

# iterate over test data
for inputs, labels in test_loader:

    # Creating new variables for the hidden state, otherwise
    # we'd backprop through the entire training history
    h = tuple([each.data for each in h])

    # get predicted outputs
    output, h = net(inputs, h)

    # calculate loss
    test_loss = criterion(output.squeeze(), labels.float())
    test_losses.append(test_loss.item())

    # convert output probabilities to predicted class (0 or 1)
    pred = torch.round(output.squeeze())  # rounds to the nearest integer

    # compare predictions to true label
    correct_tensor = pred.eq(labels.float().view_as(pred))
    correct = np.squeeze(correct_tensor.numpy()) if not train_on_gpu else np.squeeze(correct_tensor.cpu().numpy())
    num_correct += np.sum(correct)


# -- stats! -- ##
# avg test loss
print("Test loss: {:.3f}".format(np.mean(test_losses)))

# accuracy over all test data
test_acc = num_correct/len(test_loader.dataset)
print("Test accuracy: {:.3f}".format(test_acc))

运行时这是一个简单的索引编制问题,但是我已经用尽了所有创造性的解决方法。

任何帮助将不胜感激。

0 个答案:

没有答案