我有一个数据框
df = pd.DataFrame({"a":[1,1,1,2,2,2,3,3], "b":["a","a","a","b","b","b","c","c"], "c":[0,0,1,0,1,1,0,1], "d":["x","y","z","x","y","y","z","x"]})
a b c d
0 1 a 0 x
1 1 a 0 y
2 1 a 1 z
3 2 b 0 x
4 2 b 1 y
5 2 b 1 y
6 3 c 0 z
7 3 c 1 x
我想对a列和b列进行分组以获取以下输出:
a b e
0 1 a [{'c': 0, 'd': 'x'}, {'c': 0, 'd': 'y'}, {'c': 1, 'd': 'z'}]
1 2 b [{'c': 0, 'd': 'x'}, {'c': 1, 'd': 'y'}, {'c': 1, 'd': 'y'}]
2 3 c [{'c': 0, 'd': 'z'}, {'c': 1, 'd': 'x'}]
我的解决方案:
new_df = df.groupby(["a","b"])["c","d"].apply(lambda x: x.to_dict(orient="records")).reset_index(name="e")
但是问题是它的行为不一致,有时我遇到以下错误:
reset_index()获得了意外的关键字参数“名称”
如果有人指出上述解决方案中的问题或提供其他解决方法,这将很有帮助。
答案 0 :(得分:2)
您可以
import requests
skills_url = 'https://match.emsiskills.com/api/emsi-services/profiles/rankings/skills'
data = '{"filter":{"title":["15.74"]},"rank":{"by":"profiles","limit":60,"min_profiles":1}}'
r = requests.post(skills_url, data=data, json=True)
答案 1 :(得分:1)
或者我们可以做:
df['e'] = df[['c', 'd']].agg(lambda s: dict(zip(s.index, s.values)), axis=1)
df1 = df.groupby(['a', 'b'])['e'].agg(list).reset_index()
# print(df1)
a b e
0 1 a [{'c': 0, 'd': 'x'}, {'c': 0, 'd': 'y'}, {'c':...
1 2 b [{'c': 0, 'd': 'x'}, {'c': 1, 'd': 'y'}, {'c':...
2 3 c [{'c': 0, 'd': 'z'}, {'c': 1, 'd': 'x'}]