熊猫,分组并将多个列值聚合为字典

时间:2019-02-07 23:27:10

标签: python pandas pandas-groupby

所以我有一个数据框,我想通过分组依据合并一些行。

样本DF

   col_a  col_b  col_c  col_e  col_f
0      1      0      1   -1.0      2
1      1      1      3    0.0      3
2      1      2      4    NaN      3
3      2      0      3    4.0      6
4      3      0      3    4.0      2

我希望输出看起来像这样...

df.groupby('col_a')

col_a, col_c               ...col_f
1       {0: 1, 1: 3, 2:4}     {0:2,1:3,2:3}
2       ....                 ....
3        ....               ....

基本上,按col_a分组,然后通过col_f汇总我们为col_c获得的所有值,并将这些值设置到字典中,其中col_b是字典键。

不确定是否有使用groupby的方法,也许还有某种agg函数的方法,或者我是否只是愿意编写一个采用数据框并遍历每一行并使用.apply的python函数。想法?

编辑:

Original:
       col_a  col_b  col_c  col_e  col_f
    0      1      A     1   -1.0      2
    1      1      B      3    0.0      3
    2      1      C      4    NaN      3
    3      2      A      3    4.0      6
    4      3      A      3    4.0      2

Desired:
    col_a, col_c               ...col_f
    1       {A: 1, B: 3, C:4}     {A:2,B:3,C:3}
    2       ....                 ....
    3        {A:3}               {A:2}

1 个答案:

答案 0 :(得分:2)

我不希望您这样做,很少需要有一个dicts的DataFrame。您可以使用DataFrame进行所有相同(或更多)操作,并将这些作为MultiIndex中的索引/列:

In [11]: res = df.set_index(["col_a", "col_b"])

In [12]: res
Out[11]:
             col_c  col_e  col_f
col_a col_b
1     0          1   -1.0      2
      1          3    0.0      3
      2          4    NaN      3
2     0          3    4.0      6
3     0          3    4.0      2

现在您可以通过col_a,col_b和任何其他列(就好像是字典)访问DataFrame。

In [13]: res.loc[(1, 2), "col_c"]
Out[13]: 4.0

In [14]: res.loc[1, "col_c"]
Out[14]:
col_b
0    1
1    3
2    4
Name: col_c, dtype: int64

等与在DataFrame中使用dict相比,这将更加高效。