Axe,Ay,Az:[N-by-N]
B = AA(二元产品)
这意味着:
B(i,j)= [Ax(i,j);Ay(i,j);Az(i,j)]*[Ax(i,j) Ay(i,j) Az(i,j)]
B(i,j):3x3矩阵。 构建B的一种方法是:
N=2;
Ax=rand(N); Ay=rand(N); Az=rand(N); %# [N-by-N]
t=1;
F=zeros(3,3,N^2);
for i=1:N
for j=1:N
F(:,:,t)= [Ax(i,j);Ay(i,j);Az(i,j)]*[Ax(i,j) Ay(i,j) Az(i,j)];
t=t+1; %# t is just a counter
end
end
%# then we can write
B = mat2cell(F,3,3,ones(N^2,1));
B = reshape(B,N,N)';
B = cell2mat(B);
当N很大时,是否有更快的方法。
编辑:
感谢您的回答。 (它更快) 我们来说: N = 2; Ax = [1 2; 3 4]; Ay = [5 6; 7 8]; Az = [9 10; 11 12];
B =
1 5 9 4 12 20
5 25 45 12 36 60
9 45 81 20 60 100
9 21 33 16 32 48
21 49 77 32 64 96
33 77 121 48 96 144
执行命令
???使用==>时出错mtimes
内部矩阵尺寸必须一致。
如果我写:P = Ai*Aj;
那么
B =
7 19 31 15 43 71
23 67 111 31 91 151
39 115 191 47 139 231
10 22 34 22 50 78
34 78 122 46 106 166
58 134 210 70 162 254
这与上述不同 来自[Ax(1,1)Ay(1,1)Az(1,1)]的(:,:,1)deffer
编辑:
N=100;
Me :Elapsed time is 1.614244 seconds.
gnovice :Elapsed time is 0.056575 seconds.
N=200;
Me :Elapsed time is 6.044628 seconds.
gnovice :Elapsed time is 0.182455 seconds.
N=400;
Me :Elapsed time is 23.775540 seconds.
gnovice :Elapsed time is 0.756682 seconds.
Fast!
rwong: B was not the same.
编辑:
对我的申请进行一些修改后: 通过gnovice代码
1st code : 19.303310 seconds
2nd code: 23.128920 seconds
3rd code: 13.363585 seconds
似乎任何调用ceil,ind2sub的函数......如果可能的话,让thw循环变慢并且应该避免。
symIndex
很有意思!谢谢。
答案 0 :(得分:2)
这是一个相当简单和通用的实现,它使用单个for循环来执行linear indexing并避免处理三维变量或重塑:
%# General solution:
%# ----------------
B = cell(N);
for index = 1:N^2
A = [Ax(index) Ay(index) Az(index)];
B{index} = A(:)*A;
end
B = cell2mat(B);
编辑#1:
在回答关于如何减少对称矩阵B
的计算次数的附加问题时,您可以使用以上代码的以下修改版本:
%# Symmetric solution #1:
%# ---------------------
B = cell(N);
for index = find(tril(ones(N))).' %'# Loop over the lower triangular part of B
A = [Ax(index) Ay(index) Az(index)];
B{index} = A(:)*A;
symIndex = N*rem(index-1,N)+ceil(index/N); %# Find the linear index for the
%# symmetric element
if symIndex ~= index %# If we're not on the main diagonal
B{symIndex} = B{index}; %# then copy the symmetric element
end
end
B = cell2mat(B);
然而,在这种情况下,你可以通过前面的线性索引并使用两个带有下标索引的for循环来获得更好的性能(或至少更简单的代码):
%# Symmetric solution #2:
%# ---------------------
B = cell(N);
for c = 1:N %# Loop over the columns
for r = c:N %# Loop over a subset of the rows
A = [Ax(r,c) Ay(r,c) Az(r,c)];
B{r,c} = A(:)*A;
if r ~= c %# If we're not on the main diagonal
B{c,r} = B{r,c}; %# then copy the symmetric element
end
end
end
B = cell2mat(B);
编辑#2:
通过将对角线计算移动到内部循环外部(不需要条件语句)并用结果A
覆盖A(:)*A
,可以进一步加快第二个对称解决方案,以便我们可以使用B{c,r}
而不是A
更新对称单元格条目B{r,c}
(即,使用另一个单元格的内容更新一个单元格似乎带来了额外的开销):
%# Symmetric solution #3:
%# ---------------------
B = cell(N);
for c = 1:N %# Loop over the columns
A = [Ax(c,c) Ay(c,c) Az(c,c)];
B{c,c} = A(:)*A;
for r = c+1:N %# Loop over a subset of the rows
A = [Ax(r,c) Ay(r,c) Az(r,c)];
A = A(:)*A;
B{r,c} = A;
B{c,r} = A;
end
end
B = cell2mat(B);
以下是使用以下样本对称矩阵Ax
,Ay
和Az
的3个对称解的一些时序结果:
N = 400;
Ax = tril(rand(N)); %# Lower triangular matrix
Ax = Ax+triu(Ax.',1); %'# Add transpose to fill upper triangle
Ay = tril(rand(N)); %# Lower triangular matrix
Ay = Ay+triu(Ay.',1); %'# Add transpose to fill upper triangle
Az = tril(rand(N)); %# Lower triangular matrix
Az = Az+triu(Az.',1); %'# Add transpose to fill upper triangle
%# Timing results:
%# --------------
%# Solution #1 = 0.779415 seconds
%# Solution #2 = 0.704830 seconds
%# Solution #3 = 0.325920 seconds
解决方案3的大幅加速主要是通过使用局部变量B
更新A
的单元格内容而不是使用另一个单元格的内容更新一个单元格。换句话说,使用B{c,r} = B{r,c};
之类的操作复制单元格内容会带来比我预期更多的开销。
答案 1 :(得分:1)
A = cat(3, Ax, Ay, Az); % [N-by-N-by-3]
F = zeros(3, 3, N^2);
for i = 1:3,
for j = 1:3,
Ai = A(:,:,i);
Aj = A(:,:,j);
P = Ai(:) .* Aj(:);
F(i,j,:) = reshape(P, [1, 1, N^2]);
end
end
%# then we can write
B = mat2cell(F,3,3,ones(N^2,1));
B = reshape(B,N,N)';
B = cell2mat(B);