我正在尝试创建图像字幕模型。您能帮忙解决这个错误吗? input1是图像矢量,input2是字幕序列。字幕长度为32。我想将图像向量与序列的嵌入连接起来,然后将其馈送到解码器模型。
def define_model(vocab_size, max_length):
input1 = Input(shape=(512,))
input1 = tf.keras.layers.RepeatVector(32)(input1)
print(input1.shape)
input2 = Input(shape=(max_length,))
e1 = Embedding(vocab_size, 512, mask_zero=True)(input2)
print(e1.shape)
dec1 = tf.concat([input1,e1], axis=2)
print(dec1.shape)
dec2 = LSTM(512)(dec1)
dec3 = LSTM(256)(dec2)
dec4 = Dropout(0.2)(dec3)
dec5 = Dense(256, activation="relu")(dec4)
output = Dense(vocab_size, activation="softmax")(dec5)
model = tf.keras.Model(inputs=[input1, input2], outputs=output)
model.compile(loss="categorical_crossentropy", optimizer="adam")
print(model.summary())
return model
ValueError: Input 0 of layer lstm_5 is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: [None, 512]
答案 0 :(得分:1)
当LSTM图层以2D(而非3D)输入时,会发生此错误。例如:
(64, 100)
正确的格式为(n_samples, time_steps, features)
:
(64, 5, 100)
在这种情况下,您犯的错误是dec3
的输入(它是LSTM层)是dec2
的输出(也是LSTM层)。默认情况下,LSTM层中的参数return_sequences
为False
。这意味着第一个LSTM返回2D张量,该张量与下一个LSTM层不兼容。我通过在您的第一个LSTM层中设置return_sequences=True
解决了您的问题。
另外,这一行有错误:
model = tf.keras.Model(inputs=[input1, input2], outputs=output)
input1
不是输入层,因为您已对其进行了重新分配。参见:
input1 = Input(shape=(512,))
input1 = tf.keras.layers.RepeatVector(32)(input1)
我重命名了第二个e0
,与您命名变量的方式一致。
现在,一切正常:
import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras import Input
vocab_size, max_length = 1000, 32
input1 = Input(shape=(128))
e0 = tf.keras.layers.RepeatVector(32)(input1)
print(input1.shape)
input2 = Input(shape=(max_length,))
e1 = Embedding(vocab_size, 128, mask_zero=True)(input2)
print(e1.shape)
dec1 = Concatenate()([e0, e1])
print(dec1.shape)
dec2 = LSTM(16, return_sequences=True)(dec1)
dec3 = LSTM(16)(dec2)
dec4 = Dropout(0.2)(dec3)
dec5 = Dense(32, activation="relu")(dec4)
output = Dense(vocab_size, activation="softmax")(dec5)
model = tf.keras.Model(inputs=[input1, input2], outputs=output)
model.compile(loss="categorical_crossentropy", optimizer="adam")
print(model.summary())
Model: "model_2"
_________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
=================================================================================
input_24 (InputLayer) [(None, 128)] 0
_________________________________________________________________________________
input_25 (InputLayer) [(None, 32)] 0
_________________________________________________________________________________
repeat_vector_12 (RepeatVector) (None, 32, 128) 0 input_24[0][0]
_________________________________________________________________________________
embedding_11 (Embedding) (None, 32, 128) 128000 input_25[0][0]
_________________________________________________________________________________
concatenate_7 (Concatenate) (None, 32, 256) 0 repeat_vector_12[0][0]
embedding_11[0][0]
_________________________________________________________________________________
lstm_12 (LSTM) (None, 32, 16) 17472 concatenate_7[0][0]
_________________________________________________________________________________
lstm_13 (LSTM) (None, 16) 2112 lstm_12[0][0]
_________________________________________________________________________________
dropout_2 (Dropout) (None, 16) 0 lstm_13[0][0]
_________________________________________________________________________________
dense_4 (Dense) (None, 32) 544 dropout_2[0][0]
_________________________________________________________________________________
dense_5 (Dense) (None, 1000) 33000 dense_4[0][0]
=================================================================================
Total params: 181,128
Trainable params: 181,128
Non-trainable params: 0
_________________________________________________________________________________