无法从张量流数据集中加载数据

时间:2020-06-15 18:11:25

标签: python-3.x tensorflow

Jarvis类(模型): def init (自己): 模型。初始化(个体) self.model = Sequential()

    # Convulational layers\w MaxPooling
    self.model.add(Conv2D(64, (5, 5), activation="relu"))
    self.model.add(MaxPooling2D((2, 2)))
    self.model.add(Conv2D(64, (5, 5), activation="relu"))
    self.model.add(MaxPooling2D((2, 2)))

    # Flattening layers
    self.model.add(Flatten())

    # Dense layers
    self.model.add(Dense(1000))
    self.model.add(Dense(10, activation="softmax"))

    # Compiling model
    self.model.compile(optimizer="adam",
                       loss="categorical_crossentropy",
                       metrics=["accuracy"])

    self.model.fit(x=train_x, y=train_y,
                   epochs=8, batch_size=100)

我正在像这样加载数据

(train_x,train_y),(test_x,test_y)= tfds.load(“ glue”,split =“ train”,data_dir = os.path.dirname( file ))

1 个答案:

答案 0 :(得分:1)

我建议您使用scikit Learn加载数据,因为这样会更好!

首先将数据加载为csv或excel文件:

import pandas as pd
data = pd.read_csv('Example$Path$')

然后从scikitlearn导入train_test_split:

from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=101)

#X and y over here are the columns of the data. X is the training coluns and y is the column you are trying to predict

希望这对您有所帮助!