我正在尝试使用Table()
中的 Plotly
函数创建数据表。
我的数据如下:
import pandas as pd
test_df = pd.DataFrame({'Manufacturer':['Mercedes', 'Buick', 'Ford', 'Buick', 'Buick', 'Ford', 'Buick', 'Chrysler', 'Ford', 'Buick', 'Chrysler', 'Ford', 'Buick', 'Ford', 'Ford', 'Chrysler', 'Chrysler', 'Ford', 'Chrysler', 'Chrysler', 'Chrysler', 'Buick'],
'Metric':['MPG', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score', 'Score'],
'Statistic':['External', 'Min', 'Max', 'Average', 'Median', '90th', '95th', '99th', 'Min', 'Max', 'Average', 'Median', '90th', '95th', '99th','Min', 'Max', 'Average', 'Median', '90th', '95th', '99th'],
'Value':[22, 3.405, 100.29, 4.62, 4.425, 5.34, 5.83, 7.75, 2.6323, 210, 4.193, 3.28, 5.04, 6.36, 11.01, 3.72, 43, 4.98, 4.82, 5.775, 6.18, 7.182],
})
我希望能够创建一个如下表:
Manufacturer Min Max Average Median 90th 95th 99th
Buick 3.405 210 4.62 4.425 5.04 5.83 7.182
Chrysler 3.72 43 4.193 4.82 5.775 6.18 7.75
Ford 2.6323 100.29 4.98 3.28 5.34 6.36 11.01
执行此操作的代码如下所示(硬编码时):
import plotly.graph_objects as go
go.Figure(go.Table(
header=dict(
values=["Manufacturer", "Min", "Max",
"Average", "Median", "90th",
"95th", "99th"],
font=dict(size=10),
align="left"
),
cells=dict(
values=[['Buick', 'Ford', 'Chrysler'], # Headers (could change based on the source file)
[3.405, 3.72, 2.6323], # Min values
[210, 43, 100.29], # Max values
[4.62, 4.193, 4.98], # Average values
[4.425, 4.82, 3.28], # Median values
[5.04, 5.775, 5.34], # 90th percentile values
[5.83, 6.18, 6.36], # 95th percentile values
[7.182, 7.75, 11.01] # 99th percentile values
],
align = "left")
))
根据https://plotly.com/python/table/上的文档,cells
参数参数需要一个列表列表,并且可以采用熊猫数据框(很好!)。
使用文档中的示例,传递熊猫数据框的代码如下所示:
# THIS IS THE EXAMPLE FROM THE DOCS (SHOWING THE USE OF A DATA FRAME)
fig = go.Figure(data=[go.Table(
header=dict(values=list(df.columns),
fill_color='paleturquoise',
align='left'),
cells=dict(values=[df.Rank, df.State, df.Postal, df.Population],
fill_color='lavender',
align='left'))
])
我最英勇的尝试失败了:
仅按“得分”记录过滤:
test_df_subset = test_df[(test_df['Metric'] == 'Score') & (test_df['Manufacturer'].isin(['Buick', 'Ford', 'Chrysler']))]
创建数据透视表:
temp_df = pd.pivot_table(data=test_df_subset,index=['Statistic', 'Manufacturer'])
拆开数据透视表:
temp_df.unstack(0)
问题:如何重塑test_df
数据框,以便将其传递给data
函数中的cells
和go.Figure()
参数? / strong>
谢谢!
答案 0 :(得分:1)
你很近,这是一种方法
import plotly.graph_objects as go
cols_ = ["Manufacturer", "Min", "Max",
"Average", "Median", "90th",
"95th", "99th"]
manufacturers = ['Buick', 'Ford', 'Chrysler']
#this is what you are looking for
df_ = (test_df[test_df['Manufacturer'].isin(manufacturers)]
.set_index(['Manufacturer', 'Statistic'])
['Value'].unstack()
.reset_index()[cols_]
)
go.Figure(go.Table(
header=dict(
values=cols_,
font=dict(size=10),
align="left"
),
cells=dict(
values=df_.T, # note the T here
align = "left")
))
与您的方法相比,我认为df_
(用我的符号表示)等效于temp_df.unstack(0)['Value'].reset_index()[cols_]
,用您的符号表示,并使用cols_
对其进行排序