无论我使用多少个时期或更改学习率,我的验证准确性都仅保持在50年代。我现在使用1个滤除层,如果我使用2个滤除层,则我的最大训练精度为40%,验证精度为59%。目前有1个辍学层,这是我的结果:
2527/2527 [==============================] - 26s 10ms/step - loss: 1.2076 - accuracy: 0.7944 - val_loss: 3.0905 - val_accuracy: 0.5822
Epoch 10/20
2527/2527 [==============================] - 26s 10ms/step - loss: 1.1592 - accuracy: 0.7991 - val_loss: 3.0318 - val_accuracy: 0.5864
Epoch 11/20
2527/2527 [==============================] - 26s 10ms/step - loss: 1.1143 - accuracy: 0.8034 - val_loss: 3.0511 - val_accuracy: 0.5866
Epoch 12/20
2527/2527 [==============================] - 26s 10ms/step - loss: 1.0686 - accuracy: 0.8079 - val_loss: 3.0169 - val_accuracy: 0.5872
Epoch 13/20
2527/2527 [==============================] - 31s 12ms/step - loss: 1.0251 - accuracy: 0.8126 - val_loss: 3.0173 - val_accuracy: 0.5895
Epoch 14/20
2527/2527 [==============================] - 26s 10ms/step - loss: 0.9824 - accuracy: 0.8165 - val_loss: 3.0013 - val_accuracy: 0.5917
Epoch 15/20
2527/2527 [==============================] - 26s 10ms/step - loss: 0.9417 - accuracy: 0.8216 - val_loss: 2.9909 - val_accuracy: 0.5938
Epoch 16/20
2527/2527 [==============================] - 26s 10ms/step - loss: 0.9000 - accuracy: 0.8264 - val_loss: 3.0269 - val_accuracy: 0.5943
Epoch 17/20
2527/2527 [==============================] - 26s 10ms/step - loss: 0.8584 - accuracy: 0.8332 - val_loss: 3.0011 - val_accuracy: 0.5934
Epoch 18/20
2527/2527 [==============================] - 26s 10ms/step - loss: 0.8172 - accuracy: 0.8378 - val_loss: 2.9918 - val_accuracy: 0.5949
Epoch 19/20
2527/2527 [==============================] - 26s 10ms/step - loss: 0.7796 - accuracy: 0.8445 - val_loss: 2.9974 - val_accuracy: 0.5929
Epoch 20/20
2527/2527 [==============================] - 25s 10ms/step - loss: 0.7407 - accuracy: 0.8502 - val_loss: 3.0005 - val_accuracy: 0.5907
再次达到最大值,可以达到59%。这是获得的图形:
无论我进行了多少更改,验证的准确性最高可达59%。 这是我的代码:
BATCH_SIZE = 64
EPOCHS = 20
LSTM_NODES = 256
NUM_SENTENCES = 3000
MAX_SENTENCE_LENGTH = 50
MAX_NUM_WORDS = 5000
EMBEDDING_SIZE = 100
encoder_inputs_placeholder = Input(shape=(max_input_len,))
x = embedding_layer(encoder_inputs_placeholder)
encoder = LSTM(LSTM_NODES, return_state=True)
encoder_outputs, h, c = encoder(x)
encoder_states = [h, c]
decoder_inputs_placeholder = Input(shape=(max_out_len,))
decoder_embedding = Embedding(num_words_output, LSTM_NODES)
decoder_inputs_x = decoder_embedding(decoder_inputs_placeholder)
decoder_lstm = LSTM(LSTM_NODES, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs_x, initial_state=encoder_states)
decoder_dropout1 = Dropout(0.2)
decoder_outputs = decoder_dropout1(decoder_outputs)
decoder_dense1 = Dense(num_words_output, activation='softmax')
decoder_outputs = decoder_dense1(decoder_outputs)
opt = tf.keras.optimizers.RMSprop()
model = Model([encoder_inputs_placeholder,
decoder_inputs_placeholder],
decoder_outputs)
model.compile(
optimizer=opt,
loss='categorical_crossentropy',
metrics=['accuracy']
)
history = model.fit(
[encoder_input_sequences, decoder_input_sequences],
decoder_targets_one_hot,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
validation_split=0.1,
)
我很困惑,为什么只更新我的训练准确性,而不是验证准确性。
这是模型摘要:
Model: "model_1"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 25) 0
__________________________________________________________________________________________________
input_2 (InputLayer) (None, 23) 0
__________________________________________________________________________________________________
embedding_1 (Embedding) (None, 25, 100) 299100 input_1[0][0]
__________________________________________________________________________________________________
embedding_2 (Embedding) (None, 23, 256) 838144 input_2[0][0]
__________________________________________________________________________________________________
lstm_1 (LSTM) [(None, 256), (None, 365568 embedding_1[0][0]
__________________________________________________________________________________________________
lstm_2 (LSTM) [(None, 23, 256), (N 525312 embedding_2[0][0]
lstm_1[0][1]
lstm_1[0][2]
__________________________________________________________________________________________________
dropout_1 (Dropout) (None, 23, 256) 0 lstm_2[0][0]
__________________________________________________________________________________________________
dense_1 (Dense) (None, 23, 3274) 841418 dropout_1[0][0]
==================================================================================================
Total params: 2,869,542
Trainable params: 2,869,542
Non-trainable params: 0
__________________________________________________________________________________________________
None