我有相同的val_Accuracy ... 我修复了内核正则器,退出了,并将RELU更改为Sigmoid。 但这不是固定的。
我的CNN存档有什么问题?
我什么都不知道。
我使用亚当和categorical_crossentropy ... 批量大小256,纪元50
import keras as keras
## 내가 처음에 짠 코드를 수정한 내용임.
input_shape = (48, 48, 1)
num_features = 64
num_labels = 7
model_2 = models.Sequential()
# 1. CONV2D-64 RELU -> kernel_size를 2.2에서 5.5로 변경
model_2.add(Conv2D(num_features, kernel_regularizer=l2(0.001), bias_regularizer=l2(0.01), kernel_size=(5, 5), strides=(1,1), activation='sigmoid', input_shape=input_shape))
# +. maxpool2d 추가
model_2.add(MaxPooling2D(pool_size=(5,5), strides=(2, 2)))
# 2. CONV2D-64 RELU MAXPOOL2D DROPOUT , 한번 더 conv2d 추가
model_2.add(Conv2D(num_features, kernel_regularizer=l2(0.001), bias_regularizer=l2(0.01),kernel_size=(3, 3), strides=(1,1), activation='sigmoid', padding='same'))
model_2.add(Conv2D(num_features, kernel_regularizer=l2(0.001), bias_regularizer=l2(0.01),kernel_size=(3, 3), strides=(1,1), activation='sigmoid', padding='same'))
model_2.add(layers.AveragePooling2D(pool_size=(3,3), strides=(2, 2))) #maxpooling을 average로 바꿈
#model_2.add(Dropout(0.1))
# 3. CONV2D-128 RELU
model_2.add(Conv2D(num_features*2, kernel_regularizer=l2(0.001), bias_regularizer=l2(0.01),kernel_size=(3, 3), strides=(1,1), activation='sigmoid', padding='same'))
# 4. CONV2D-128 RELU
model_2.add(Conv2D(num_features*2, kernel_regularizer=l2(0.001), bias_regularizer=l2(0.01),kernel_size=(3, 3), strides=(1,1), activation='sigmoid', padding='same'))
model_2.add(layers.AveragePooling2D(pool_size=(3,3), strides=(2, 2))) # 이거 추가
# 5. CONV2D-256 RELU
model_2.add(Conv2D(num_features*2*2, kernel_regularizer=l2(0.001), bias_regularizer=l2(0.01),kernel_size=(3, 3), strides=(1,1), activation='sigmoid', padding='same'))
# 6. CONV2D-256 RELU MAXPOOL2D DROPOUT => maxpool을 averagepooling2d로 바꿈
model_2.add(Conv2D(num_features*2*2, kernel_regularizer=l2(0.001), bias_regularizer=l2(0.01),kernel_size=(3, 3), strides=(1,1), activation='sigmoid', padding='same'))
model_2.add(layers.AveragePooling2D(pool_size=(3,3), strides=(2, 2)))
#model_2.add(Dropout(0.1))
# 7. FLATTEN
model_2.add(Flatten())
# 8. FULLY CONNECTED RELU DROPOUT
model_2.add(Dense(2*2*2*2*num_features, kernel_regularizer=l2(0.001), bias_regularizer=l2(0.01),activation='sigmoid'))
model_2.add(Dropout(0.2))
model_2.add(Dense(2*2*2*2*num_features, kernel_regularizer=l2(0.001), bias_regularizer=l2(0.01),activation='sigmoid'))
model_2.add(Dropout(0.2))
#model_2.add(Dense(2*num_features, activation='relu'))
#model_2.add(Dropout(0.5))
# 9. FULLY CONNECTED SOFTMAX
model_2.add(Dense(num_labels, activation='softmax'))