熊猫:如何根据唯一列值分配随机数

时间:2020-06-06 18:15:07

标签: python pandas dataframe indexing

我有一个大型数据集,其中包含“组”和“邮政编码”列。 df的示例如下:

group   postcode
group_1 WC2E 8BU
group_1 WC2E 8BU
group_1 WC2E 8BU
group_2 WC2E 8BU
group_2 WC2E 8BU
group_2 WC2E 8BU
group_2 WC1A 1DD
group_2 WC1A 1DD
group_2 WC1A 1DD
group_2 WC1A 1DD
1488087 WC1A 1DD
1488087 WC1A 1DD

我正在尝试创建一个名为“ random_val”的新列,为唯一组中的每个匹配邮政编码分配一个随机的统一编号,用于“组”列中没有位的行。我的代码如下所示:

df.loc[~df['group'].astype(str).str.isdigit(), 'random_val'] = df['postcode'].map(dict(zip(df['postcode'].unique(), np.random.uniform(0, 1, size=len(self.data['postcode'].unique())))))

当前,此代码将唯一的随机数分配给唯一的邮政编码,而不管它在哪个组中:

group   postcode    random_val
group_1 WC2E 8BU    0.210917735
group_1 WC2E 8BU    0.210917735
group_1 WC2E 8BU    0.210917735
group_2 WC2E 8BU    0.210917735
group_2 WC2E 8BU    0.210917735
group_2 WC2E 8BU    0.210917735
group_2 WC1A 1DD    0.55733542
group_2 WC1A 1DD    0.55733542
group_2 WC1A 1DD    0.55733542
group_2 WC1A 1DD    0.55733542
1488087 WC1A 1DD    
1488087 WC1A 1DD

但是,我希望随机数对于邮政编码群组是唯一的:

group   postcode    random_val
group_1 WC2E 8BU    0.210917735
group_1 WC2E 8BU    0.210917735
group_1 WC2E 8BU    0.210917735
group_2 WC2E 8BU    0.494920676
group_2 WC2E 8BU    0.494920676
group_2 WC2E 8BU    0.494920676
group_2 WC1A 1DD    0.55733542
group_2 WC1A 1DD    0.55733542
group_2 WC1A 1DD    0.55733542
group_2 WC1A 1DD    0.55733542
1488087 WC1A 1DD    
1488087 WC1A 1DD    

努力弄清楚如何做到这一点。任何帮助表示赞赏。谢谢

3 个答案:

答案 0 :(得分:1)

您可以在此处利用熊猫对齐功能。

df.set_index('group',inplace=True)
unique_idx = df.index[~df.index.str.isdigit()].unique()
s = pd.Series(np.random.uniform(0,1,len(unique_idx)) , index =unique_idx)
df['random_value'] = s
df.reset_index()

      group  postcode  random_value
0   group_1  WC2E 8BU      0.232501
1   group_1  WC2E 8BU      0.232501
2   group_1  WC2E 8BU      0.232501
3   group_2  WC2E 8BU      0.242696
4   group_2  WC2E 8BU      0.242696
5   group_2  WC2E 8BU      0.242696
6   group_2  WC1A 1DD      0.242696
7   group_2  WC1A 1DD      0.242696
8   group_2  WC1A 1DD      0.242696
9   group_2  WC1A 1DD      0.242696
10  1488087  WC1A 1DD           NaN
11  1488087  WC1A 1DD           NaN

答案 1 :(得分:0)

这是一个解决方案:

def random_val(x):
    return pd.Series([np.random.uniform(0, 1)] * x.size)

df["dummy"] = 1

df["random_val"] = df.groupby(["group", "postcode"])["dummy"].transform(random_val)
df.loc[df['group'].astype(str).str.isdigit(), "random_val"] = None

结果是:

      group  postcode  dummy  random_val
0   group_1  WC2E 8BU      1    0.781711
1   group_1  WC2E 8BU      1    0.781711
2   group_1  WC2E 8BU      1    0.781711
3   group_2  WC2E 8BU      1    0.107743
4   group_2  WC2E 8BU      1    0.107743
5   group_2  WC2E 8BU      1    0.107743
6   group_2  WC1A 1DD      1    0.103295
7   group_2  WC1A 1DD      1    0.103295
8   group_2  WC1A 1DD      1    0.103295
9   group_2  WC1A 1DD      1    0.103295
10  1488087  WC1A 1DD      1         NaN
11  1488087  WC1A 1DD      1         NaN

答案 2 :(得分:0)

哈希两列可能是最简单的解决方案:

df['hash'] = pd.Series((hash(tuple(row)) for _, row in df.iterrows()))

    group   postcode    hash
0   group_1 WC2E 8BU    -8918045538474016779
1   group_1 WC2E 8BU    -8918045538474016779
2   group_1 WC2E 8BU    -8918045538474016779
3   group_2 WC2E 8BU    -6943464964421442707
4   group_2 WC2E 8BU    -6943464964421442707
5   group_2 WC2E 8BU    -6943464964421442707
6   group_2 WC1A 1DD    -357652478068898330
7   group_2 WC1A 1DD    -357652478068898330
8   group_2 WC1A 1DD    -357652478068898330
9   group_2 WC1A 1DD    -357652478068898330
10  1488087 WC1A 1DD    1701757393872926575
11  1488087 WC1A 1DD    1701757393872926575