ValueError:两个形状中的尺寸1必须相等,但分别为10和1

时间:2020-06-02 13:30:33

标签: keras deep-learning mnist shap

我试图借助MNIST数据集来实现shap DeepExplainer(DeepSHAP)模块。但是我收到以下错误:

ValueError:两个形状中的尺寸1必须相等,但必须为10和1。形状为[?,10]和[?,1]。对于渐变形状为[7,dense_2_1 / Softmax_grad / gradients / gradients_7 / dense_2_1 / Softmax_grad / truediv_grad / Select_1(op:'Select'),输入形状为[?,1],[?, 10],[?, 10]。

该错误在该行中: shap_values = e.shap_values(x_test[1:5])

完整代码:

from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

batch_size = 128
num_classes = 10
epochs = 12

# input image dimensions
img_rows, img_cols = 28, 28

# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
             activation='relu',
             input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
          optimizer=keras.optimizers.Adadelta(),
          metrics=['accuracy'])

model.fit(x_train, y_train,
      batch_size=batch_size,
      epochs=epochs,
      verbose=1,
      validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

import shap
import numpy as np

# select a set of background examples to take an expectation over
background = x_train[np.random.choice(x_train.shape[0], 100, replace=False)]

# explain predictions of the model on three images
e = shap.DeepExplainer(model, background)
shap_values = e.shap_values(x_test[1:5])
shap.image_plot(shap_values, -x_test[1:5])

1 个答案:

答案 0 :(得分:0)

您正在使用哪个Keras版本?您可以通过代码keras.__version__

打印

当我在Tensorflow下导入keras时,您的代码按预期工作。其中一项主要更改是使用adam优化器,该优化器在您的情况下效果更好,因为它可以在几个时间段内提高准确性。我尝试了Adadelta,但是它正在慢慢优化。自己检查性能。

检查以下代码是否有小修改(不多)。我所做的只是在Tensorflow引发其他错误时在keas 2.3.1下导入模块。

from __future__ import print_function
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras import backend as K

batch_size = 256
num_classes = 10
epochs = 12

# input image dimensions
img_rows, img_cols = 28, 28

# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),activation='relu', input_shape=input_shape,))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=tf.keras.losses.categorical_crossentropy,
          optimizer=tf.keras.optimizers.Adam(0.001),#tf.keras.optimizers.Adadelta(),
          metrics=['accuracy'])

model.fit(x_train, y_train,
          steps_per_epoch = x_train.shape[0]//batch_size,
      batch_size=batch_size,
      epochs=epochs,
      verbose=1,
      validation_data=(x_test, y_test),validation_steps=x_test.shape[0]//batch_size)
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])