当我在python中连接两个cnn层时,加入池时出现此错误。如何纠正错误并标准化值?
import tensorflow as tf
import numpy as np
from tensorflow.python.ops import gen_array_ops
class TextCNN(object):
"""
A CNN for text classification.
Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer.
"""
def __init__(
self, sequence_length, num_classes, vocab_size,
embedding_size, filter_sizes, num_filters,fc_hidden_size, l2_reg_lambda=0.0):
# Placeholders for input, output and dropout
self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
fc_hidden_size=1024
self.is_training = tf.placeholder(tf.bool, name="is_training")
initializer=tf.random_normal_initializer(stddev=0.1)
self.initializer=initializer
self.is_training_flag=True
# Keeping track of l2 regularization loss (optional)
l2_loss = tf.constant(0.0)
def flatten_reshape(variable):
dim = 1
for d in variable.get_shape()[1:].as_list():
dim *= d
return tf.reshape(variable, shape=[-1, dim])
def _highway_layer(input_, size, num_layers=1, bias=-2.0, f=tf.nn.relu):
"""
Highway Network (cf. http://arxiv.org/abs/1505.00387).
t = sigmoid(Wy + b)
z = t * g(Wy + b) + (1 - t) * y
where g is nonlinearity, t is transform gate, and (1 - t) is carry gate.
"""
for idx in range(num_layers):
g = f(_linear(input_, size, scope=("highway_lin_{0}".format(idx))))
t = tf.sigmoid(_linear(input_, size, scope=("highway_gate_{0}".format(idx))) + bias)
output = t * g + (1. - t) * input_
input_ = output
return output
def _linear(input_, output_size, scope="SimpleLinear"):
"""
Linear map: output[k] = sum_i(Matrix[k, i] * args[i] ) + Bias[k]
Args:
input_: a tensor or a list of 2D, batch x n, Tensors.
output_size: int, second dimension of W[i].
scope: VariableScope for the created subgraph; defaults to "SimpleLinear".
Returns:
A 2D Tensor with shape [batch x output_size] equal to
sum_i(args[i] * W[i]), where W[i]s are newly created matrices.
Raises:
ValueError: if some of the arguments has unspecified or wrong shape.
"""
shape = input_.get_shape().as_list()
if len(shape) != 2:
raise ValueError("Linear is expecting 2D arguments: {0}".format(str(shape)))
if not shape[1]:
raise ValueError("Linear expects shape[1] of arguments: {0}".format(str(shape)))
input_size = shape[1]
# Now the computation.
with tf.variable_scope(scope):
W = tf.get_variable("W", [input_size, output_size], dtype=input_.dtype)
b = tf.get_variable("b", [output_size], dtype=input_.dtype)
return tf.nn.xw_plus_b(input_, W, b)
# Embedding layer
with tf.device('/cpu:0'), tf.name_scope("embedding"):
self.W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
name="W")
self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
# Create a convolution + maxpool layer for each filter size
pooled_outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.name_scope("conv-maxpool-%s" % filter_size):
# Convolution Layer
filter_shape = [filter_size, embedding_size, 1, num_filters]
W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
conv = tf.nn.conv2d(
self.embedded_chars_expanded,
W,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
# Apply nonlinearity
h = tf.nn.sigmoid(tf.nn.bias_add(conv, b), name="sigmoid")
#h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
# Maxpooling over the outputs
h2 = tf.reshape(h, [-1, sequence_length, num_filters,1]) # shape:[batch_size,sequence_length,num_filters,1]
print(h2)
# self.initializer=tf.random_normal_initializer(stddev=0.1)
filter2 = tf.get_variable("filter2-%s" % filter_size,[filter_size, num_filters, 1, num_filters],initializer=self.initializer)
conv2 = tf.nn.conv2d(h2, filter2, strides=[1, 1, 1, 1], padding="SAME",name="conv2") # shape:[batch_size,sequence_length-filter_size*2+2,1,num_filters]
b2 = tf.get_variable("b2-%s" % filter_size, [num_filters]) # ADD 2017-06-09
h3 = tf.nn.sigmoid(tf.nn.bias_add(conv2, b2), name="sigmoid")
pooled = tf.nn.max_pool(
h3,
ksize=[1, sequence_length - filter_size + 1, 1, 1],
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
#x_reshaped = tf.reshape(pooled, [-1, 3])
s=flatten_reshape(pooled)
pooled_outputs.append(s)
# Combine all the pooled features
num_filters_total = num_filters * len(filter_sizes)
self.h_pool = tf.concat(pooled_outputs, 3)
self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])
print("zzz")
num_filters_total = num_filters * len(filter_sizes)
self.pool = tf.concat(pooled_outputs, axis=3)
self.pool_flat = tf.reshape(self.pool, shape=[-1, num_filters_total])
# Fully Connected Layer
with tf.name_scope("fc"):
W = tf.Variable(tf.truncated_normal(shape=[num_filters_total, fc_hidden_size],
stddev=0.1, dtype=tf.float32), name="W")
b = tf.Variable(tf.constant(value=0.1, shape=[fc_hidden_size], dtype=tf.float32), name="b")
self.fc = tf.nn.xw_plus_b(self.pool_flat, W, b)
# Batch Normalization Layer
self.fc_bn = tf.layers.batch_normalization(self.fc, training=self.is_training)
# Apply nonlinearity
self.fc_out = tf.nn.relu(self.fc_bn, name="relu")
# Highway Layer
with tf.name_scope("highway"):
self.highway = _highway_layer(self.fc_out, self.fc_out.get_shape()[1], num_layers=1, bias=0)
# Add dropout
with tf.name_scope("dropout"):
self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
# Final (unnormalized) scores and predictions
with tf.name_scope("output"):
W = tf.get_variable(
"W",
shape=[num_filters_total, num_classes],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
l2_loss += tf.nn.l2_loss(W)
l2_loss += tf.nn.l2_loss(b)
self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
self.predictions = tf.argmax(self.scores, 1, name="predictions")
# Calculate mean cross-entropy loss
with tf.name_scope("loss"):
losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y)
self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
# Accuracy
with tf.name_scope("accuracy"):
correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
ValueError:两个形状中的尺寸1必须相等,但必须为4和5。形状为[?,4,50]和[?,5,50]。输入形状为[?,3,50,50],[?, 4,50,50],[?, 5,50,50],[]的'concat'(op:'ConcatV2')和计算输入张量:input [3]
ValueError:形状必须至少为4级,但输入形状为[[,7500],[?, 10000],[?, 12500],[]的'concat'(op:'ConcatV2')的等级为2 ]