Tensorflow错误:ValueError:形状必须等于等级,但是2和1从形状1与其他形状合并

时间:2017-02-15 17:01:40

标签: python tensorflow artificial-intelligence

我正在尝试使用tensorflow来实现dcgan并遇到了这个错误:

ValueError: Shapes must be equal rank, but are 2 and 1
From merging shape 1 with other shapes. for 'generator/Reshape/packed' (op: 'Pack') with input shapes: [?,2048], [100,2048], [2048].

就iv聚集而言,它表明我的张量形状不同,但我无法看到我需要更改以修复此错误。我认为错误在这些方法之间悬而未决:

首先,我使用以下方法在方法中创建占位符:

self.z = tf.placeholder(tf.float32, [None,self.z_dimension], name='z')
self.z_sum = tf.histogram_summary("z", self.z)

self.G = self.generator(self.z)

然后最后一个语句调用生成器方法,此方法使用reshape通过以下方式更改张量:

 self.z_ = linear(z,self.gen_dimension * 8 * sample_H16 * sample_W16, 'gen_h0_lin', with_w=True)

 self.h0 = tf.reshape(self.z_,[-1, sample_H16, sample_W16,self.gen_dimension * 8])

 h0 = tf.nn.relu(self.gen_batchnorm1(self.h0))

如果有帮助,这是我的线性方法:

def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False):
shape = input_.get_shape().as_list()

with tf.variable_scope(scope or "Linear"):
  matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,tf.random_normal_initializer(stddev=stddev))
  bias = tf.get_variable("bias", [output_size],initializer=tf.constant_initializer(bias_start))
  if with_w:
    return tf.matmul(input_, matrix) + bias, matrix, bias
  else:
    return tf.matmul(input_, matrix) + bias

编辑:

我也使用这些占位符:

    self.inputs = tf.placeholder(tf.float32, shape=[self.batch_size] + image_dimension, name='real_images')
    self.gen_inputs = tf.placeholder(tf.float32, shape=[self.sample_size] + image_dimension, name='sample_inputs')
    inputs = self.inputs
    sample_inputs = self.gen_inputs

1 个答案:

答案 0 :(得分:5)

linear(z, self.gen_dimension * 8 * sample_H16 * sample_W16, 'gen_h0_lin', with_w=True)将返回元组(tf.matmul(input_, matrix) + bias, matrix, bias)

因此,self.z_由元组分配,而不是唯一的tf张量。

只需将linear(z, self.gen_dimension * 8 * sample_H16 * sample_W16, 'gen_h0_lin', with_w=True)更改为linear(z, self.gen_dimension * 8 * sample_H16 * sample_W16, 'gen_h0_lin', with_w=False)