# Creating PySpark Object
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName("XMLParser").getOrCreate()
sc=spark.sparkContext
hadoop_conf=sc._jsc.hadoopConfiguration()
hadoop_conf.set("fs.s3n.impl", "org.apache.hadoop.fs.s3native.NativeS3FileSystem")
hadoop_conf.set("fs.s3n.awsAccessKeyId", aws_key)
hadoop_conf.set("fs.s3n.awsSecretAccessKey", aws_secret)
然后我可以使用s3存储桶中的以下代码读取文件
df = spark.read.format("xml").options(rootTag='returnResult', rowTag="query").load("s3n://bucketName/folder/file.xml")
但是当我尝试使用此代码使用三角洲湖(镶木地板文件)写回s3
df.write.format("delta").mode('overwrite').save("s3n://bucket/folder/file")
我收到此错误
Py4JJavaError: An error occurred while calling o778.save.
: java.io.IOException: The error typically occurs when the default LogStore implementation, that
is, HDFSLogStore, is used to write into a Delta table on a non-HDFS storage system.
In order to get the transactional ACID guarantees on table updates, you have to use the
correct implementation of LogStore that is appropriate for your storage system.
See https://docs.delta.io/latest/delta-storage.html " for details.
at org.apache.spark.sql.delta.DeltaErrors$.incorrectLogStoreImplementationException(DeltaErrors.scala:157)
at org.apache.spark.sql.delta.storage.HDFSLogStore.writeInternal(HDFSLogStore.scala:73)
at org.apache.spark.sql.delta.storage.HDFSLogStore.write(HDFSLogStore.scala:64)
at org.apache.spark.sql.delta.OptimisticTransactionImpl$$anonfun$doCommit$1.apply$mcJ$sp(OptimisticTransaction.scala:434)
at org.apache.spark.sql.delta.OptimisticTransactionImpl$$anonfun$doCommit$1.apply(OptimisticTransaction.scala:416)
at org.apache.spark.sql.delta.OptimisticTransactionImpl$$anonfun$doCommit$1.apply(OptimisticTransaction.scala:416)
at org.apache.spark.sql.delta.DeltaLog.lockInterruptibly(DeltaLog.scala:152)
at org.apache.spark.sql.delta.OptimisticTransactionImpl$class.doCommit(OptimisticTransaction.scala:415)
at org.apache.spark.sql.delta.OptimisticTransaction.doCommit(OptimisticTransaction.scala:80)
at org.apache.spark.sql.delta.OptimisticTransactionImpl$$anonfun$commit$1.apply$mcJ$sp(OptimisticTransaction.scala:326)
at org.apache.spark.sql.delta.OptimisticTransactionImpl$$anonfun$commit$1.apply(OptimisticTransaction.scala:284)
at org.apache.spark.sql.delta.OptimisticTransactionImpl$$anonfun$commit$1.apply(OptimisticTransaction.scala:284)
at com.databricks.spark.util.DatabricksLogging$class.recordOperation(DatabricksLogging.scala:77)
at org.apache.spark.sql.delta.OptimisticTransaction.recordOperation(OptimisticTransaction.scala:80)
at org.apache.spark.sql.delta.metering.DeltaLogging$class.recordDeltaOperation(DeltaLogging.scala:103)
at org.apache.spark.sql.delta.OptimisticTransaction.recordDeltaOperation(OptimisticTransaction.scala:80)
at org.apache.spark.sql.delta.OptimisticTransactionImpl$class.commit(OptimisticTransaction.scala:284)
at org.apache.spark.sql.delta.OptimisticTransaction.commit(OptimisticTransaction.scala:80)
at org.apache.spark.sql.delta.commands.WriteIntoDelta$$anonfun$run$1.apply(WriteIntoDelta.scala:67)
at org.apache.spark.sql.delta.commands.WriteIntoDelta$$anonfun$run$1.apply(WriteIntoDelta.scala:64)
at org.apache.spark.sql.delta.DeltaLog.withNewTransaction(DeltaLog.scala:188)
at org.apache.spark.sql.delta.commands.WriteIntoDelta.run(WriteIntoDelta.scala:64)
at org.apache.spark.sql.delta.sources.DeltaDataSource.createRelation(DeltaDataSource.scala:134)
at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:45)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:86)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:83)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:81)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:676)
at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:80)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:127)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:75)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:676)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:285)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:271)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:229)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.hadoop.fs.UnsupportedFileSystemException: fs.AbstractFileSystem.s3n.impl=null: No AbstractFileSystem configured for scheme: s3n
at org.apache.hadoop.fs.AbstractFileSystem.createFileSystem(AbstractFileSystem.java:160)
at org.apache.hadoop.fs.AbstractFileSystem.get(AbstractFileSystem.java:249)
at org.apache.hadoop.fs.FileContext$2.run(FileContext.java:334)
at org.apache.hadoop.fs.FileContext$2.run(FileContext.java:331)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1698)
at org.apache.hadoop.fs.FileContext.getAbstractFileSystem(FileContext.java:331)
at org.apache.hadoop.fs.FileContext.getFileContext(FileContext.java:448)
at org.apache.spark.sql.delta.storage.HDFSLogStore.getFileContext(HDFSLogStore.scala:47)
at org.apache.spark.sql.delta.storage.HDFSLogStore.writeInternal(HDFSLogStore.scala:70)
... 53 more
我试图遵循stacktrace中给出的链接,但无法弄清楚如何解决此问题。任何帮助都将得到
答案 0 :(得分:2)
创建spark会话后,您需要添加databricks提供的配置,以将s3启用为增量存储,例如:
conf = spark.sparkContext._conf.setAll([('spark.delta.logStore.class','org.apache.spark.sql.delta.storage.S3SingleDriverLogStore')])
spark.sparkContext._conf.getAll()
顾名思义,仅当所有并发写入均来自单个Spark驱动程序时,S3SingleDriverLogStore实现才能正常工作。这是一个应用程序属性,必须在启动SparkContext之前进行设置,并且在上下文的生存期内不能更改。
来自Databricks 访问here,以配置s3a路径访问密钥和秘密密钥。
答案 1 :(得分:0)
我发现不需要对S3位置执行任何特殊操作。我只需要将增量格式文件写到S3中尚不存在的文件夹中即可。如果它已经存在并且其中包含对象,我将得到与OP相同的错误。
这是我的Spark会话创建代码:
spark = glueContext.spark_session.builder \
.config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension") \
.config("spark.sql.catalog.spark_catalog", "org.apache.spark.sql.delta.catalog.DeltaCatalog") \
.getOrCreate()