当我最初写一个三角洲湖泊时,无论是否使用分区(带有partitionBy),都没有任何区别。
在写入之前在同一列上使用分区,只会更改镶木地板文件的数量。 将列明确地分区为“不可为空”不会改变效果。
版本:
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions._
val tmp = spark.createDataFrame(
spark.sparkContext.parallelize((1 to 10).map(n => Row(n, n % 3))),
StructType(Seq(StructField("CONTENT", IntegerType), StructField("PARTITION", IntegerType))))
/*
tmp.show
+-------+---------+
|CONTENT|PARTITION|
+-------+---------+
| 1| 1|
| 2| 2|
| 3| 0|
| 4| 1|
| 5| 2|
| 6| 0|
| 7| 1|
| 8| 2|
| 9| 0|
| 10| 1|
+-------+---------+
tmp.printSchema
root
|-- CONTENT: integer (nullable = true)
|-- PARTITION: integer (nullable = true)
*/
tmp.write.format("delta").partitionBy("PARTITION").save("PARTITIONED_DELTA_LAKE")
生成的delta-lake目录如下:
ls -1 PARTITIONED_DELTA_LAKE
_delta_log
00000000000000000000.json
part-00000-a3015965-b101-4f63-87de-1d06a7662312-c000.snappy.parquet
part-00007-3155dde1-9f41-49b5-908e-08ce6fc077af-c000.snappy.parquet
part-00014-047f6a28-3001-4686-9742-4e4dbac05c53-c000.snappy.parquet
part-00021-e0d7f861-79e9-41c9-afcd-dbe688720492-c000.snappy.parquet
part-00028-fe3da69d-660a-445b-a99c-0e7ad2f92bf0-c000.snappy.parquet
part-00035-d69cfb9d-d320-4d9f-9b92-5d80c88d1a77-c000.snappy.parquet
part-00043-edd049a2-c952-4f7b-8ca7-8c0319932e2d-c000.snappy.parquet
part-00050-38eb3348-9e0d-49af-9ca8-a323e58b3712-c000.snappy.parquet
part-00057-906312ad-8556-4696-84ba-248b01664688-c000.snappy.parquet
part-00064-31f5d03d-2c63-40e7-8fe5-a8374eff9894-c000.snappy.parquet
part-00071-e1afc2b9-aa5b-4e7c-b94a-0c176523e9f1-c000.snappy.parquet
cat PARTITIONED_DELTA_LAKE/_delta_log/00000000000000000000.json
{"commitInfo":{"timestamp":1579073383370,"operation":"WRITE","operationParameters":{"mode":"ErrorIfExists","partitionBy":"[]"},"isBlindAppend":true}}
{"protocol":{"minReaderVersion":1,"minWriterVersion":2}}
{"metaData":{"id":"2cdd6fbd-bffa-415e-9c06-94ffc2048cbe","format":{"provider":"parquet","options":{}},"schemaString":"{\"type\":\"struct\",\"fields\":[{\"name\":\"CONTENT\",\"type\":\"integer\",\"nullable\":true,\"metadata\":{}},{\"name\":\"PARTITION\",\"type\":\"integer\",\"nullable\":true,\"metadata\":{}}]}","partitionColumns":[],"configuration":{},"createdTime":1579073381183}}
{"add":{"path":"part-00000-a3015965-b101-4f63-87de-1d06a7662312-c000.snappy.parquet","partitionValues":{},"size":363,"modificationTime":1579073382329,"dataChange":true}}
{"add":{"path":"part-00007-3155dde1-9f41-49b5-908e-08ce6fc077af-c000.snappy.parquet","partitionValues":{},"size":625,"modificationTime":1579073382545,"dataChange":true}}
{"add":{"path":"part-00014-047f6a28-3001-4686-9742-4e4dbac05c53-c000.snappy.parquet","partitionValues":{},"size":625,"modificationTime":1579073382237,"dataChange":true}}
{"add":{"path":"part-00021-e0d7f861-79e9-41c9-afcd-dbe688720492-c000.snappy.parquet","partitionValues":{},"size":625,"modificationTime":1579073382583,"dataChange":true}}
{"add":{"path":"part-00028-fe3da69d-660a-445b-a99c-0e7ad2f92bf0-c000.snappy.parquet","partitionValues":{},"size":625,"modificationTime":1579073382893,"dataChange":true}}
{"add":{"path":"part-00035-d69cfb9d-d320-4d9f-9b92-5d80c88d1a77-c000.snappy.parquet","partitionValues":{},"size":625,"modificationTime":1579073382488,"dataChange":true}}
{"add":{"path":"part-00043-edd049a2-c952-4f7b-8ca7-8c0319932e2d-c000.snappy.parquet","partitionValues":{},"size":625,"modificationTime":1579073383262,"dataChange":true}}
{"add":{"path":"part-00050-38eb3348-9e0d-49af-9ca8-a323e58b3712-c000.snappy.parquet","partitionValues":{},"size":625,"modificationTime":1579073382683,"dataChange":true}}
{"add":{"path":"part-00057-906312ad-8556-4696-84ba-248b01664688-c000.snappy.parquet","partitionValues":{},"size":625,"modificationTime":1579073382416,"dataChange":true}}
{"add":{"path":"part-00064-31f5d03d-2c63-40e7-8fe5-a8374eff9894-c000.snappy.parquet","partitionValues":{},"size":625,"modificationTime":1579073382549,"dataChange":true}}
{"add":{"path":"part-00071-e1afc2b9-aa5b-4e7c-b94a-0c176523e9f1-c000.snappy.parquet","partitionValues":{},"size":625,"modificationTime":1579073382511,"dataChange":true}}
我希望有类似的东西
ls -1 PARTITIONED_DELTA_LAKE
_delta_log
00000000000000000000.json
PARTITION=0
part-00000-a3015965-b101-4f63-87de-1d06a7662312-c000.snappy.parquet
...
cat PARTITIONED_DELTA_LAKE/_delta_log/00000000000000000000.json
..."partitionBy":"[PARTITION]"...
..."partitionColumns":[PARTITION]...
..."partitionValues":{0}...
答案 0 :(得分:1)
正如Jacek所评论的,使用的Spark版本太旧。我已经尝试过上面的Spark版本代码:
只有2.4.2分区才能按预期工作。在此版本this bugfix中,此问题可能已得到解决:
.. 用户可以在partitionBy中指定列,我们的内部数据源将使用此信息。不幸的是,对于外部系统,该数据被静默删除,没有反馈给用户 ..