找出两个(非谐波)波之间的相位差

时间:2011-05-27 21:17:33

标签: python numpy neural-network physics scipy

我有两个数据集列出了时间t的两个神经网络组件的平均电压输出,看起来像这样:

A = [-80.0, -80.0, -80.0, -80.0, -80.0, -80.0, -79.58, -79.55, -79.08, -78.95, -78.77, -78.45,-77.75, -77.18, -77.08, -77.18, -77.16, -76.6, -76.34, -76.35]

B = [-80.0, -80.0, -80.0, -80.0, -80.0, -80.0, -78.74, -78.65, -78.08, -77.75, -77.31, -76.55, -75.55, -75.18, -75.34, -75.32, -75.43, -74.94, -74.7, -74.68]

当两个神经组件在一定程度上“同相”时,这意味着它们是相互关联的。我想要做的是计算A和B之间的相位差,最好是在模拟的整个时间。由于两个组件不太可能完全同相,我想将该相位差与某个阈值进行比较。

这些是非谐振荡器,我不知道它们的功能,只知道这些值,所以我不知道如何确定相位或各自的相位差。

我在Python中使用numpy和scipy进行这个项目(两个程序集都是numpy数组)。

任何建议都将不胜感激!

编辑:添加了地块

Example datafile for assembly 1

Example datafile for assembly 2

以下是两个数据集的外观图: Plot of two neural assemblies overlapping Plot of two neural assemblies seperate

2 个答案:

答案 0 :(得分:22)

也许您正在寻找互相关:

scipy.​signal.​signaltools.correlate(A, B)

互相关中峰值的位置将是相位差的估计值。

编辑3:现在更新我查看了真实的数据文件。您发现相移为零有两个原因。首先,两个时间序列之间的相移确实为零。如果在matplotlib图上水平放大,则可以清楚地看到这一点。其次,重要的是首先规范数据(最重要的是,减去平均值),否则在阵列末端的零填充效应会淹没互相关中的实际信号。在下面的例子中,我通过添加一个人工移位然后检查我是否正确恢复它来验证我找到了“真正的”峰值。

import numpy, scipy
from scipy.signal import correlate

# Load datasets, taking mean of 100 values in each table row
A = numpy.loadtxt("vb-sync-XReport.txt")[:,1:].mean(axis=1)
B = numpy.loadtxt("vb-sync-YReport.txt")[:,1:].mean(axis=1)

nsamples = A.size

# regularize datasets by subtracting mean and dividing by s.d.
A -= A.mean(); A /= A.std()
B -= B.mean(); B /= B.std()

# Put in an artificial time shift between the two datasets
time_shift = 20
A = numpy.roll(A, time_shift)

# Find cross-correlation
xcorr = correlate(A, B)

# delta time array to match xcorr
dt = numpy.arange(1-nsamples, nsamples)

recovered_time_shift = dt[xcorr.argmax()]

print "Added time shift: %d" % (time_shift)
print "Recovered time shift: %d" % (recovered_time_shift)

# SAMPLE OUTPUT:
# Added time shift: 20
# Recovered time shift: 20

编辑:以下是虚假数据处理方式的示例。

编辑2:添加了示例图表。

Cross correlation of noisy anharmonic signals

import numpy, scipy
from scipy.signal import square, sawtooth, correlate
from numpy import pi, random

period = 1.0                            # period of oscillations (seconds)
tmax = 10.0                             # length of time series (seconds)
nsamples = 1000
noise_amplitude = 0.6

phase_shift = 0.6*pi                   # in radians

# construct time array
t = numpy.linspace(0.0, tmax, nsamples, endpoint=False)

# Signal A is a square wave (plus some noise)
A = square(2.0*pi*t/period) + noise_amplitude*random.normal(size=(nsamples,))

# Signal B is a phase-shifted saw wave with the same period
B = -sawtooth(phase_shift + 2.0*pi*t/period) + noise_amplitude*random.normal(size=(nsamples,))

# calculate cross correlation of the two signals
xcorr = correlate(A, B)

# The peak of the cross-correlation gives the shift between the two signals
# The xcorr array goes from -nsamples to nsamples
dt = numpy.linspace(-t[-1], t[-1], 2*nsamples-1)
recovered_time_shift = dt[xcorr.argmax()]

# force the phase shift to be in [-pi:pi]
recovered_phase_shift = 2*pi*(((0.5 + recovered_time_shift/period) % 1.0) - 0.5)

relative_error = (recovered_phase_shift - phase_shift)/(2*pi)

print "Original phase shift: %.2f pi" % (phase_shift/pi)
print "Recovered phase shift: %.2f pi" % (recovered_phase_shift/pi)
print "Relative error: %.4f" % (relative_error)

# OUTPUT:
# Original phase shift: 0.25 pi
# Recovered phase shift: 0.24 pi
# Relative error: -0.0050

# Now graph the signals and the cross-correlation

from pyx import canvas, graph, text, color, style, trafo, unit
from pyx.graph import axis, key

text.set(mode="latex")
text.preamble(r"\usepackage{txfonts}")
figwidth = 12
gkey = key.key(pos=None, hpos=0.05, vpos=0.8)
xaxis = axis.linear(title=r"Time, \(t\)")
yaxis = axis.linear(title="Signal", min=-5, max=17)
g = graph.graphxy(width=figwidth, x=xaxis, y=yaxis, key=gkey)
plotdata = [graph.data.values(x=t, y=signal+offset, title=label) for label, signal, offset in (r"\(A(t) = \mathrm{square}(2\pi t/T)\)", A, 2.5), (r"\(B(t) = \mathrm{sawtooth}(\phi + 2 \pi t/T)\)", B, -2.5)]
linestyles = [style.linestyle.solid, style.linejoin.round, style.linewidth.Thick, color.gradient.Rainbow, color.transparency(0.5)]
plotstyles = [graph.style.line(linestyles)]
g.plot(plotdata, plotstyles)
g.text(10*unit.x_pt, 0.56*figwidth, r"\textbf{Cross correlation of noisy anharmonic signals}")
g.text(10*unit.x_pt, 0.33*figwidth, "Phase shift: input \(\phi = %.2f \,\pi\), recovered \(\phi = %.2f \,\pi\)" % (phase_shift/pi, recovered_phase_shift/pi))
xxaxis = axis.linear(title=r"Time Lag, \(\Delta t\)", min=-1.5, max=1.5)
yyaxis = axis.linear(title=r"\(A(t) \star B(t)\)")
gg = graph.graphxy(width=0.2*figwidth, x=xxaxis, y=yyaxis)
plotstyles = [graph.style.line(linestyles + [color.rgb(0.2,0.5,0.2)])]
gg.plot(graph.data.values(x=dt, y=xcorr), plotstyles)
gg.stroke(gg.xgridpath(recovered_time_shift), [style.linewidth.THIck, color.gray(0.5), color.transparency(0.7)])
ggtrafos = [trafo.translate(0.75*figwidth, 0.45*figwidth)]
g.insert(gg, ggtrafos)
g.writePDFfile("so-xcorr-pyx")

所以它工作得非常好,即使是非常嘈杂的数据和非常非谐波。

答案 1 :(得分:2)

@ deprecated的评论是问题的确切答案,当谈到纯代码python解决方案时。评论非常有价值,但我觉得我应该为在神经网络的特定环境中寻找答案的人添加一些注释。

当您像我一样摄取大型神经元组件的平均膜电位时,相关性将相对较弱。您想要看的主要是穗列车之间的相关性,各个组件的潜伏期或兴奋性(即突触效能)。通过观察潜在超过某个阈值的点,可以相对容易地找到这一点。 Scipy在尖峰列车上的相关函数将显示更精细的神经元或神经组件之间的相互依赖关系图,当你给出尖峰列车时,与实际电位相反。您还可以查看Brian的统计模块,可在此处找到:

http://neuralensemble.org/trac/brian/browser/trunk/brian/tools/statistics.py

至于相位差,它可能是一个不充分的衡量标准,因为神经元不是谐波振荡器。如果要对相位进行非常精确的测量,最好查看非谐振荡器的同步。描述这类振荡器的数学模型是Kuramoto模型,它在神经元和神经网络的背景下非常有用。 Kuramoto模型和集成与火同步有大量文档可供使用,所以我将其留待。