三重态损耗精度低CIFAR10

时间:2020-05-02 03:43:11

标签: tensorflow keras

我开始学习三元组网络并决定使用卷积神经网络进行实现,但是我决定将CIFAR-10数据集用于图像分类,但是准确性很低。

经过训练后,准确度约为0.32。

def pairwise_distance(feature, squared=False):
    """Computes the pairwise distance matrix with numerical stability.

    output[i, j] = || feature[i, :] - feature[j, :] ||_2

    Args:
      feature: 2-D Tensor of size [number of data, feature dimension].
      squared: Boolean, whether or not to square the pairwise distances.

    Returns:
      pairwise_distances: 2-D Tensor of size [number of data, number of data].
    """
    pairwise_distances_squared = math_ops.add(
        math_ops.reduce_sum(math_ops.square(feature), axis=[1], keepdims=True),
        math_ops.reduce_sum(
            math_ops.square(array_ops.transpose(feature)),
            axis=[0],
            keepdims=True)) - 2.0 * math_ops.matmul(feature,
                                                    array_ops.transpose(feature))

    # Deal with numerical inaccuracies. Set small negatives to zero.
    pairwise_distances_squared = math_ops.maximum(pairwise_distances_squared, 0.0)
    # Get the mask where the zero distances are at.
    error_mask = math_ops.less_equal(pairwise_distances_squared, 0.0)

    # Optionally take the sqrt.
    if squared:
        pairwise_distances = pairwise_distances_squared
    else:
        pairwise_distances = math_ops.sqrt(
            pairwise_distances_squared + math_ops.to_float(error_mask) * 1e-16)

    # Undo conditionally adding 1e-16.
    pairwise_distances = math_ops.multiply(
        pairwise_distances, math_ops.to_float(math_ops.logical_not(error_mask)))

    num_data = array_ops.shape(feature)[0]
    # Explicitly set diagonals to zero.
    mask_offdiagonals = array_ops.ones_like(pairwise_distances) - array_ops.diag(
        array_ops.ones([num_data]))
    pairwise_distances = math_ops.multiply(pairwise_distances, mask_offdiagonals)
    return pairwise_distances

def masked_maximum(data, mask, dim=1):
    """Computes the axis wise maximum over chosen elements.

    Args:
      data: 2-D float `Tensor` of size [n, m].
      mask: 2-D Boolean `Tensor` of size [n, m].
      dim: The dimension over which to compute the maximum.

    Returns:
      masked_maximums: N-D `Tensor`.
        The maximized dimension is of size 1 after the operation.
    """
    axis_minimums = math_ops.reduce_min(data, dim, keepdims=True)
    masked_maximums = math_ops.reduce_max(
        math_ops.multiply(data - axis_minimums, mask), dim,
        keepdims=True) + axis_minimums
    return masked_maximums

def masked_minimum(data, mask, dim=1):
    """Computes the axis wise minimum over chosen elements.

    Args:
      data: 2-D float `Tensor` of size [n, m].
      mask: 2-D Boolean `Tensor` of size [n, m].
      dim: The dimension over which to compute the minimum.

    Returns:
      masked_minimums: N-D `Tensor`.
        The minimized dimension is of size 1 after the operation.
    """
    axis_maximums = math_ops.reduce_max(data, dim, keepdims=True)
    masked_minimums = math_ops.reduce_min(
        math_ops.multiply(data - axis_maximums, mask), dim,
        keepdims=True) + axis_maximums
    return masked_minimums


def triplet_loss_adapted_from_tf(y_true, y_pred):
    del y_true
    margin = 1.
    labels = y_pred[:, :1]

    labels = tf.cast(labels, dtype='int32')

    embeddings = y_pred[:, 1:]

    ### Code from Tensorflow function [tf.contrib.losses.metric_learning.triplet_semihard_loss] starts here:

    # Reshape [batch_size] label tensor to a [batch_size, 1] label tensor.
    # lshape=array_ops.shape(labels)
    # assert lshape.shape == 1
    # labels = array_ops.reshape(labels, [lshape[0], 1])

    # Build pairwise squared distance matrix.
    pdist_matrix = pairwise_distance(embeddings, squared=True)
    # Build pairwise binary adjacency matrix.
    adjacency = math_ops.equal(labels, array_ops.transpose(labels))
    # Invert so we can select negatives only.
    adjacency_not = math_ops.logical_not(adjacency)

    # global batch_size
    batch_size = array_ops.size(labels)  # was 'array_ops.size(labels)'

    # Compute the mask.
    pdist_matrix_tile = array_ops.tile(pdist_matrix, [batch_size, 1])
    mask = math_ops.logical_and(
        array_ops.tile(adjacency_not, [batch_size, 1]),
        math_ops.greater(
            pdist_matrix_tile, array_ops.reshape(
                array_ops.transpose(pdist_matrix), [-1, 1])))
    mask_final = array_ops.reshape(
        math_ops.greater(
            math_ops.reduce_sum(
                math_ops.cast(mask, dtype=dtypes.float32), 1, keepdims=True),
            0.0), [batch_size, batch_size])
    mask_final = array_ops.transpose(mask_final)

    adjacency_not = math_ops.cast(adjacency_not, dtype=dtypes.float32)
    mask = math_ops.cast(mask, dtype=dtypes.float32)

    # negatives_outside: smallest D_an where D_an > D_ap.
    negatives_outside = array_ops.reshape(
        masked_minimum(pdist_matrix_tile, mask), [batch_size, batch_size])
    negatives_outside = array_ops.transpose(negatives_outside)

    # negatives_inside: largest D_an.
    negatives_inside = array_ops.tile(
        masked_maximum(pdist_matrix, adjacency_not), [1, batch_size])
    semi_hard_negatives = array_ops.where(
        mask_final, negatives_outside, negatives_inside)

    loss_mat = math_ops.add(margin, pdist_matrix - semi_hard_negatives)

    mask_positives = math_ops.cast(
        adjacency, dtype=dtypes.float32) - array_ops.diag(
        array_ops.ones([batch_size]))

    # In lifted-struct, the authors multiply 0.5 for upper triangular
    #   in semihard, they take all positive pairs except the diagonal.
    num_positives = math_ops.reduce_sum(mask_positives)

    semi_hard_triplet_loss_distance = math_ops.truediv(
        math_ops.reduce_sum(
            math_ops.maximum(
                math_ops.multiply(loss_mat, mask_positives), 0.0)),
        num_positives,
        name='triplet_semihard_loss')

    ### Code from Tensorflow function semi-hard triplet loss ENDS here.
    return semi_hard_triplet_loss_distance



def create_base_network(image_input_shape, embedding_size):
    weight_decay = 1e-4
    model = Sequential()
    model.add(Conv2D(32, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay),
                     input_shape=image_input_shape))
    model.add(Activation('elu'))
    model.add(BatchNormalization())
    model.add(Conv2D(32, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(Activation('elu'))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.2))

    model.add(Conv2D(64, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(Activation('elu'))
    model.add(BatchNormalization())
    model.add(Conv2D(64, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(Activation('elu'))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.3))

    model.add(Conv2D(128, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(Activation('elu'))
    model.add(BatchNormalization())
    model.add(Conv2D(128, (3, 3), padding='same', kernel_regularizer=regularizers.l2(weight_decay)))
    model.add(Activation('elu'))
    model.add(BatchNormalization())
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.4))

    model.add(Flatten())
    model.add(Dense(embedding_size, activation='softmax'))
    return model




if __name__ == "__main__":
    # in case this scriot is called from another file, let's make sure it doesn't start training the network...

    batch_size = 128
    epochs = 100
    train_flag = True  # either     True or False

    embedding_size = 64

    no_of_components = 2  # for visualization -> PCA.fit_transform()

    step = 10

    # The data, split between train and test sets
    (x_train, y_train), (x_test, y_test) = cifar10.load_data()
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')
    x_train /= 255.
    x_test /= 255.
    input_image_shape = (32, 32, 3)
    x_val = x_test#[:2000, :, :]
    y_val = y_test#[:2000]

    # Network training...
    if train_flag == True:
        base_network = create_base_network(input_image_shape, embedding_size)

        input_images = Input(shape=input_image_shape, name='input_image')  # input layer for images
        input_labels = Input(shape=(1,), name='input_label')  # input layer for labels
        embeddings = base_network([input_images])  # output of network -> embeddings
        labels_plus_embeddings = concatenate([input_labels, embeddings])  # concatenating the labels + embeddings

        # Defining a model with inputs (images, labels) and outputs (labels_plus_embeddings)
        model = Model(inputs=[input_images, input_labels],
                      outputs=labels_plus_embeddings)

        #model.summary()
        #plot_model(model, to_file='model.png', show_shapes=True, show_layer_names=True)

        # train session
        opt = Adam(lr=0.001)  # choose optimiser. RMS is good too!

        model.compile(loss=triplet_loss_adapted_from_tf,
                      optimizer=opt)

        filepath = "semiH_trip_MNIST_v13_ep{epoch:02d}_BS%d.hdf5" % batch_size
        checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=False, period=25)
        callbacks_list = [checkpoint]

        # Uses 'dummy' embeddings + dummy gt labels. Will be removed as soon as loaded, to free memory
        dummy_gt_train = np.zeros((len(x_train), embedding_size + 1))
        dummy_gt_val = np.zeros((len(x_val), embedding_size + 1))

        x_train = np.reshape(x_train, (len(x_train), x_train.shape[1], x_train.shape[1], 3))
        x_val = np.reshape(x_val, (len(x_val), x_train.shape[1], x_train.shape[1], 3))

        H = model.fit(
            x=[x_train, y_train],
            y=dummy_gt_train,
            batch_size=batch_size,
            epochs=epochs,
            validation_data=([x_val, y_val], dummy_gt_val),
            callbacks=callbacks_list)


    else:
          #####
        model = load_model('semiH_trip_MNIST_v13_ep25_BS256.hdf5',
                           custom_objects={'triplet_loss_adapted_from_tf': triplet_loss_adapted_from_tf})

          # Test the network

    # creating an empty network
    testing_embeddings = create_base_network(input_image_shape,
                                                   embedding_size=embedding_size)
    x_embeddings_before_train = testing_embeddings.predict(np.reshape(x_test, (len(x_test), 32, 32, 3)))
    # Grabbing the weights from the trained network
    for layer_target, layer_source in zip(testing_embeddings.layers, model.layers[2].layers):
        weights = layer_source.get_weights()
        layer_target.set_weights(weights)
        del weights




    # Visualizing the effect of embeddings -> using PCA!
    x_embeddings = testing_embeddings.predict(x_train)
    y_embeddings = testing_embeddings.predict(x_val)

    svc = SVC()
    svc.fit(x_embeddings, y_train)
    valid_prediction = svc.predict(y_embeddings)
    print(valid_prediction.shape)
    print("validation accuracy : ", accuracy_score(y_val, valid_prediction))

如果你们可以检查我是否做对了,我真的很高兴。希望很快能收到任何人的声音

1 个答案:

答案 0 :(得分:0)

尝试这样的简单网络(来自here):

def create_base_network(image_input_shape, embedding_size):
    input_image = Input(shape=image_input_shape)# input_5:InputLayer
    x = Flatten()(input_image)
    x = Dense(128, activation='relu')(x)
    x = Dropout(0.1)(x)
    x = Dense(128, activation='relu')(x)
    x = Dropout(0.1)(x)
    x = Dense(embedding_size)(x)  # dense_15: Dense

    base_network = Model(inputs=input_image, outputs=x)
    plot_model(base_network, to_file='base_netwoN.png', 
               show_shapes=True, show_layer_names=True)
return base_network