所以我已经从以下csv创建了一个熊猫数据框:
id age00 education marital gender ethnic industry income00
0 51.965 17 0 1 0 5 76110
1 41.807 12 1 0 0 1 43216
2 36.331 12 1 0 1 3 52118
3 56.758 9 1 1 2 2 47770
我的目标是创建一个名为 future_income 的新列,该列将占用每一行并使用我的模型计算未来收入。
这由我在下面创建的类中的 predictFinalIncome 变量完成:
class myModel:
def __init__(self, bias) :
self.bias = bias # bias is a dictionary with info to set bias on the gender function and the ethnic function
def b_gender(self, gender):
effect = 0
if (self.bias["gender"]): # if there is gender bias in this model/world (from the constructor)
effect = -0.0005 if (gender<1) else 0.0005 # This amount to 1.2% difference annually
return self.scale * effect
def b_ethnic(self, ethnic):
effect = 0
if (self.bias["ethnic"]): # if there is ethnic bias in this model/world (from the constructor)
effect = -0.0007 if (ethnic < 1) else -0.0003 if (ethnic < 2) else 0.0005
return self.scale * effect
# other methods/functions
def predictGrowthFactor( self, person ): # edited
factor = 1 + person['education'] + person['marital'] + person['income'] + person['industry']
return factor
def predictIncome( self, person ): # perdict the new income one MONTH later. (At least on average, each month the income grows.)
return person['income']*self.predictGrowthFactor( person )
def predictFinalIncome( self, n, person ):
n_income = self.predictIncome( person )
for i in range(n):
n_income = n_income * i
return n_income
n在这种情况下为120。
简而言之。我想将每一行放入到名为 predictFinalIncome 的类函数中,并在我的df上添加一个名为future_income的新变量,该变量是他们在120个月内的收入。
编辑:
我实际上不需要人类。我不小心删除了确定参数“ bias”的类中的init__。相反,基于@Cavin Dsouza的代码。但这不起作用。
然后像这样读取代码:
utopModel = myModel( { "gender": False, "ethnic": False } ) # no bias
n =120
#Utopia
u = utopModel
world1['incomeFinal_utop'] = world1.apply(lambda row: u.predictFinalIncome(n, row), axis=1)
因此,当进入predictFinalIncome时,错误是这样的:
TypeError: 'str' object cannot be interpreted as an integer
During handling of the above exception, another exception occurred:
KeyError
KeyError: 'income'
答案 0 :(得分:1)
我认为您只是在使其变得非常复杂,您所做的所有计算实际上只能由一个函数完成,除非您需要将中间结果用于其他用途。
您可以创建一个可应用于数据框每一行的函数:
def predictFinalIncome(row, n):
factor = 1 + row['education'] + row['marital'] + row['income'] + row['industry']
n_income = row['income'] * factor
for i in range(n):
n_income = n_income * i
return n_income
然后,使用df.apply
:
df.apply(lambda r: predictFinalIncome(r, 120), axis=1)
返回0是因为当您执行for i in range(n)
时,实际上是从0开始的,因此结果始终为0。您需要对其进行修复。
更新:使函数在Model
类内部
从您的发贴中,我看不出此功能存在于模型中的明显原因,尤其是此功能不使用任何其他方法或您创建的bias属性,但在这里。
class myModel:
def __init__(self, bias) :
self.bias = bias
def predictFinalIncome(self, row, n):
factor = 1 + row['education'] + row['marital'] + row['income'] + row['industry']
n_income = row['income'] * factor
for i in range(n):
n_income = n_income * i
return n_income
# to use:
model = myModel(bias)
df.apply(lambda r: model.predictFinalIncome(r, 120), axis=1)