当我使用交叉熵损失作为损失函数时,我得到的尺寸超出范围误差
Traceback (most recent call last):
File "e:\testcode\cnn.py", line 122, in <module>
loss = loss_func(output, b_y) # cross entropy loss
File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\module.py", line 532, in __call__
result = self.forward(*input, **kwargs)
File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\loss.py", line 916, in forward
ignore_index=self.ignore_index, reduction=self.reduction)
File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\nn\functional.py", line 2021, in cross_entropy
return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction)
File "D:\Anaconda3\envs\pytorch\lib\site-packages\torch\nn\functional.py", line 1317, in log_softmax
ret = input.log_softmax(dim)
IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1)
,损失函数为
loss = loss_func(output, b_y)
输出值为
tensor([-0.3507, 0.2214, 0.3781, 0.3057], grad_fn=<SelectBackward>)
b_y的值为
tensor([3])
答案 0 :(得分:0)
传递给CrossEntropyLoss
的第一个参数必须是形状为[batch size x number of classes]
的2d张量。如果仅计算单个批次的损失,请先将unsqueeze
的logit传递给损失函数。
logits = torch.tensor([-0.3507, 0.2214, 0.3781, 0.3057]).unsqueeze(0)
targets = torch.tensor([3])
loss_func = torch.nn.CrossEntropyLoss()
loss_func(logits, targets)