使用Tensorflow是否可以将多类SVM作为CNN的最后一层

时间:2020-04-11 14:23:35

标签: tensorflow machine-learning neural-network svm

我想使用多类RBF SVM作为在Tensorflow中构建的CNN模型的最后一层。

我目前有以下内容。但是,是否可以将SVM插入最后一层而不是最后一层? 我有什么选择。 我发现Tensorflow具有一种称为“随机傅立叶特征”的东西,可以在其中使用内核方法来模仿SVM?这是一个选择吗?如果是这样,我将如何将其实施到目前的产品中?

net = x_noisy_image

# 1st convolutional layer.
net = tf.layers.conv2d(inputs=net, name='layer_conv1', padding='same',
                       filters=32, kernel_size=3, activation=tf.nn.relu)
# 2nd convolutional layer.
net = tf.layers.conv2d(inputs=net, name='layer_conv2', padding='same',
                       filters=32, kernel_size=3, activation=tf.nn.relu)
# Pooling layer
net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2)

# 3rd convolutional layer.
net = tf.layers.conv2d(inputs=net, name='layer_conv3', padding='same',
                       filters=64, kernel_size=3, activation=tf.nn.relu)
# 4th convolution layer
net = tf.layers.conv2d(inputs=net, name='layer_conv4', padding='same',
                       filters=64, kernel_size=3, activation=tf.nn.relu)
# Pooling layer
net = tf.layers.max_pooling2d(inputs=net, pool_size=2, strides=2)

# Flatten layer.This should eventually be replaced by:
# net = tf.layers.flatten(net)
net = tf.contrib.layers.flatten(net)

# 1st fully-connected / dense layer.
net = tf.layers.dense(inputs=net, name='layer_fc1',
                      units=200, activation=tf.nn.relu)
# 2nd fully-connected / dense layer.
net = tf.layers.dense(inputs=net, name='layer_fc2',
                      units=200, activation=tf.nn.relu)
# 3rd fully-connected / dense layer.
net = tf.layers.dense(inputs=net, name='layer_fc_out',
                      units=num_classes, activation=tf.nn.softmax)



# Unscaled output of the network.
logits = net
# Softmax output of the network.
y_pred = tf.nn.softmax(logits=logits)
# Loss measure to be optimized.
cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_true,
                                                           logits=logits)
loss = tf.reduce_mean(cross_entropy)

"""
Optimizer for Normal Training
"""
[var.name for var in tf.trainable_variables()]
optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(loss)

1 个答案:

答案 0 :(得分:0)

我不了解多类SVM,但我了解线性SVM,为此,您应该将激活更改为线性,将丢失更改为铰链。检查此链接以获取澄清https://keras.io/examples/keras_recipes/quasi_svm/