我使用此代码在数据上训练模型
tf.keras.backend.clear_session()
tf.random.set_seed(50)
np.random.seed(50)
train_set = windowed_dataset(x_train, window_size=30, batch_size=15, shuffle_buffer=shuffle_buffer_size)
model = tf.keras.models.Sequential([
tf.keras.layers.Conv1D(filters=100, kernel_size=5,
strides=1, padding="causal",
activation="relu",
input_shape=[None, 1]),
tf.keras.layers.LSTM(100, return_sequences=True),
tf.keras.layers.LSTM(100, return_sequences=True),
#tf.keras.layers.Dense(30, activation="relu"),
#tf.keras.layers.Dense(30, activation="relu"),
tf.keras.layers.Dense(1),
tf.keras.layers.Lambda(lambda x: x * 400)
])
optimizer = tf.keras.optimizers.Adam(
learning_rate=0.00001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=True,
name='Adam'
)
model.compile(loss=tf.keras.losses.Huber(),
optimizer=optimizer,
metrics=["mae"])
history = model.fit(train_set,epochs=100)
这是模型。summary()
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d (Conv1D) (None, 30, 100) 600
_________________________________________________________________
lstm (LSTM) (None, 30, 100) 80400
_________________________________________________________________
lstm_1 (LSTM) (None, 30, 100) 80400
_________________________________________________________________
dense (Dense) (None, 30, 1) 101
_________________________________________________________________
lambda (Lambda) (None, 30, 1) 0
=================================================================
Total params: 161,501
Trainable params: 161,501
Non-trainable params: 0
_________________________________________________________________
None
我正在尝试运行此代码
model.predict(
x_valid, batch_size=None, verbose=0, steps=None, callbacks=None, max_queue_size=10,
workers=1, use_multiprocessing=False
)
并抛出此错误消息:
ValueError:图层顺序的输入0与 层:预期ndim = 3,找到的ndim = 2。收到完整的图形:[无,1]
我尝试使用此功能np.array(x_valid).reshape(300,1)
重塑x_valid,但这没用。
我通过扩展ndim三次来解决了这个问题
test_input = x_valid[425]
test_input = np.expand_dims(test_input,axis=0)
test_input = np.expand_dims(test_input,axis=0)
test_input = np.expand_dims(test_input,axis=0)
print(model.predict(test_input))
# OUTPUT [[[71.46894]]]
答案 0 :(得分:1)
您的问题来自以下事实:您需要添加batch_dimension以便在一个数据点上进行预测。
在处理TensorFlow和Keras时这是必需的,即使您对单个样本进行预测,也需要将batch_size设置为1。
您需要做的是:
test_input = x_valid[0]
)test_input = np.expand_dims(test_input,axis=0)
prediction = model.predict(test_input)
进行预测答案 1 :(得分:1)
问题来自错误的测试数据尺寸。 x_input的形状为(15,30,1),因此由此得出测试数据也必须具有3-dim形状(例如[1,1,1])。在您的代码中,测试数据为1维数组,因此您应使用'test_input = np.expand_dims(test_input,axis = 0)'将TWICE扩展为3维数组。