我正在关注带有张量流和MNIST数据集的神经网络教程。我遇到了以下代码:
for _ in range(1000):
batch = mnist.train.next_batch(50)
train_step.run(feed_dict={x: batch[0], y: batch[1]})
我在可视化批处理结构时遇到一些问题。特别是批次的索引。 batch[0]
是否以某种方式表示该批次中的所有50张图像,而batch[1]
表示这些图像的所有50个标签?如果有人可以直观地显示批处理的结构,那将是很好的。我进行了搜索,但找不到关于此的好的教程。
答案 0 :(得分:1)
这是我用于批量显示图像的基本代码
def display_one_flower(image, title, subplot, red=False, titlesize=16):
plt.subplot(*subplot)
plt.axis('off')
plt.imshow(image)
if len(title) > 0:
plt.title(title, fontsize=int(titlesize) if not red else int(titlesize/1.2),
color='red' if red else 'black', fontdict={'verticalalignment':'center'},
pad=int(titlesize/1.5))
return (subplot[0], subplot[1], subplot[2]+1)
def display_batch_of_images(images,labels, predictions=None):
"""This will work with:
display_batch_of_images(images)
display_batch_of_images(images, predictions)
display_batch_of_images((images, labels))
display_batch_of_images((images, labels), predictions)
"""
# auto-squaring: this will drop data that does not fit into square or square-
#rectangle
rows = int(math.sqrt(len(images)))
cols = len(images)//rows
# size and spacing
FIGSIZE = 13.0
SPACING = 0.1
subplot=(rows,cols,1)
if rows < cols:
plt.figure(figsize=(FIGSIZE,FIGSIZE/cols*rows))
else:
plt.figure(figsize=(FIGSIZE/rows*cols,FIGSIZE))
# display
tempo=""
for i, (image, label) in enumerate(zip(images[:rows*cols], labels[:rows*cols])):
title = '' if label is None else tempo
correct = True
if predictions is not None:
title, correct = title_from_label_and_target(predictions[i], label)
dynamic_titlesize = FIGSIZE*SPACING/max(rows,cols)*40+3 # magic formula tested to work from 1x1 to 10x10 images
subplot = display_one_flower(image, title, subplot, not correct, titlesize=dynamic_titlesize)
#layout
plt.tight_layout()
if label is None and predictions is None:
plt.subplots_adjust(wspace=0, hspace=0)
else:
plt.subplots_adjust(wspace=SPACING, hspace=SPACING)
plt.show()
display_batch_of_images(images,labels)