这是我用来加载和预处理图像的几行代码
# Loading the images and their labels
# Lists to load data into
x = [] # images
y = [] # labels
# Path to folder with training images
base = "/content/flower_tpu/flower_tpu/flowers_google/flowers_google//"
# Iterating to store images and labels in their respective lists
for idx in range(len(df_flowers)):
# get the flower row
flower = df_flowers.iloc[idx]
# create flower path
path = f"{base}{flower.id}.jpeg"
#load image
img = Image.open(path)
# convert to numpy
img = np.array(img)
# Remove noise using Gaussian Blur
blur = cv2.GaussianBlur(img, (5, 5), 0)
# Segmentation
gray = cv2.cvtColor(blur, cv2.COLOR_RGB2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# Further noise removal (Morphology)
kernel = np.ones((3, 3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
# sure background area
sure_bg = cv2.dilate(opening, kernel, iterations=3)
# Finding sure foreground area
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0)
# Finding unknown region
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg, sure_fg)
# Marker labelling
ret, markers = cv2.connectedComponents(sure_fg)
# Add one to all labels so that sure background is not 0, but 1
markers = markers + 1
# Now, mark the region of unknown with zero
markers[unknown == 255] = 0
markers = cv2.watershed(img, markers)
img[markers == -1] = [255, 0, 0]
#save to X
x.append(markers)
# get label
label = df_labels[df_labels['flower_class'] == flower.flower_cls].label.values[0]
# save to y
y.append(label)
该代码有效,但是它将图像的形状从(224,224,3)更改为(224,224)
因此,当我尝试使用VGG16模型训练该模型时,出现此错误:
Input 0 of layer block1_conv1 is incompatible with the layer: expected ndim=4, found ndim=3. Full shape received: [None, 224, 224]
我该如何解决?
答案 0 :(得分:0)
from PIL import Image
import numpy as np
x = []
path = "data/25_12024_010.jpg"
#load image
img = Image.open(path)
# convert to numpy
img = np.array(img)
# Remove noise using Gaussian Blur
blur = cv2.GaussianBlur(img, (5, 5), 0)
# Segmentation
gray = cv2.cvtColor(blur, cv2.COLOR_RGB2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# Further noise removal (Morphology)
kernel = np.ones((3, 3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
# sure background area
sure_bg = cv2.dilate(opening, kernel, iterations=3)
# Finding sure foreground area
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
ret, sure_fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(), 255, 0)
# Finding unknown region
sure_fg = np.uint8(sure_fg)
unknown = cv2.subtract(sure_bg, sure_fg)
# Marker labelling
ret, markers = cv2.connectedComponents(sure_fg)
# Add one to all labels so that sure background is not 0, but 1
markers = markers + 1
# Now, mark the region of unknown with zero
markers[unknown == 255] = 0
markers = cv2.watershed(img, markers)
img[markers == -1] = [255, 0, 0]
#save to X
x.append(markers)
print(x[0].shape) # (120,120)
markers = np.stack((markers,)*3, axis=-1)
x.append(markers)
print(x[1].shape) # (120,120,3)
只需测试代码,markers
就会为您提供2维数组,因此您只需将其转换为3维数组(3通道图像)即可。
只需在x.append(markers)
之前添加以下行
markers = np.stack((markers,)*3, axis=-1)