q_pred = self.Q.forward(states)
提供了以下输出:
tensor([[-4.4713e-02, 4.2878e-03],
[-2.2801e-01, 2.2295e-01],
[-9.8098e-03, -1.0766e-01],
[-1.4654e-01, 1.2742e-01],
[-1.6224e-01, 1.6565e-01],
[-3.6515e-02, 3.1022e-02],
[-4.5094e-02, 1.4848e-02],
[-1.4157e-01, 1.3974e-01],
[-3.0593e-03, -4.2342e-02],
[-4.1689e-02, 2.9376e-02],
[-9.3629e-02, 1.0297e-01],
[-5.2163e-04, -7.4799e-02],
[-2.8944e-02, -1.2417e-01]], grad_fn=<AddmmBackward>)
和actions
给我以下输出
tensor([1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1], dtype=torch.int32)
从以上两个输出中,我如何能得到以下结果:
tensor([4.2878e-03, -2.2801e-01, -1.0766e-01, 1.2742e-01, -1.6224e-01, 3.1022e-02, 1.4848e-02,
-1.4157e-01, -4.2342e-02, -4.1689e-02, -9.3629e-02, -7.4799e-02,, -1.2417e-01], grad_fn=<AddmmBackward>)
?
更新
self.Q
的实现方法如下:
class LinearDeepQNetwork(nn.Module):
def __init__(self, lr, n_actions, input_dims):
super(LinearDeepQNetwork, self).__init__()
self.fc1 = nn.Linear(*input_dims, 128)
self.fc2 = nn.Linear(128, n_actions)
self.optimizer = optim.Adam(self.parameters(), lr=lr)
self.loss = nn.MSELoss()
self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu')
self.to(self.device)
def forward(self, state):
layer1 = F.relu(self.fc1(state))
actions = self.fc2(layer1)
return actions
答案 0 :(得分:0)
您可以使用:
q_pred[torch.arange(q_pred.size(0)), actions.type(torch.LongTensor)]